Allgemeines zu diesem Handbuch

P/N: 4710.01569A02

Produktmodell: E3 Exp/E3/E3 Pro/E2 Exp/E2/E2 Pro/E1 Exp

Veröffentlichungsdatum: 2019-06

Copyright ©2018-2019 SonoScape Medical Corp. Alle Rechte vorbehalten.

Erklärung

SonoScape Medical Corp. (im Folgenden SonoScape) besitzt die geistigen Eigentumsrechte für dieses Handbuch und verwaltet zudem den Inhalt dieses Handbuchs als vertrauliche Informationen. Dieses Handbuch dient zur Bezugnahme während des Betriebs, der Wartung und der Reinigung des Produkts und bedeutet keine Übertragung einer Lizenz unter den Patentrechten von SonoScape oder den Rechten Anderer.

Dieses Handbuch enthält durch Urheberrechte oder Patente geschützte Informationen. Ohne ein schriftliches Einverständnis von SonoScape darf dieses Handbuch auf keine Weise reproduziert, abgeändert oder in eine andere Sprache übersetzt werden.

Alle in diesem Handbuch enthaltenen Informationen gelten als korrekt. SonoScape ist nicht für Fehler in diesem Handbuch oder für zufällige oder Folgeschäden in Verbindung mit der Bereitstellung, Leistung oder Verwendung dieses Handbuchs haftbar. SonoScape übernimmt keine Haftung, die sich aus Verletzungen von Patenten oder anderen Rechten Dritter ergibt.

Dieses Handbuch basiert auf der maximalen Konfiguration, daher gelten einige Inhalte möglicherweise nicht für Ihr Produkt.

Dieses Handbuch kann jederzeit ohne vorherige Ankündigung und rechtliche Verpflichtung geändert werden.

Verantwortung des Herstellers

SonoScape ist nur für die Auswirkungen auf die Sicherheit, Zuverlässigkeit und Leistung dieses Produkts verantwortlich, wenn alle folgenden Anforderungen erfüllt sind.

- Alle Installationsvorgänge, Erweiterungen, Änderungen, Modifikationen und Reparaturen dieses Produkts werden von Personal durchgeführt, das von SonoScape autorisiert wurde.
- Die Verwendung oder Anwendung dieses Produkts oder die Verwendung von Teilen oder Zubehör ist von SonoScape genehmigt.
- Die Elektroinstallation der entsprechenden Räumlichkeit entspricht den geltenden nationalen und lokalen Normen.
- Das Produkt wurde gemäß der zugehörigen Gebrauchsanweisung verwendet.

Dokumentation

SonoScape stellt die Dokumentation bereit, die aus verschiedenen Handbüchern besteht:

 Das grundlegende Benutzerhandbuch beschreibt die Grundfunktionen und die Betriebsverfahren des Systems.

- Das erweiterte Benutzerhandbuch (dieses Handbuch) stellt Informationen über die Messungen und Berechnungen bereit, die in jedem Modus zur Verfügung stehen.
- Auf der CD werden die mit dem System verbundenen Schallausgangsleistungs-Daten bereitgestellt.

Informieren Sie sich eingehend über die Bedeutung der folgenden Elemente, bevor Sie dieses Handbuch lesen.

Punkt	Bedeutung
WARNING	Weist auf eine potenziell gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht vermieden wird.
CAUTION	Weist auf eine potenziell gefährliche Situation hin, die zu Fehlfunktionen oder Schäden am Gerät führen kann, wenn sie nicht vermieden wird.
%	Weist auf eine potenzielle biologische Gefahrensituation hin, die zur Übertragung von Krankheiten führen kann, wenn sie nicht vermieden wird.
HINWEIS	Gibt Vorsichtsmaßnahmen oder Empfehlungen an, die bei der Bedienung des Systems eingesetzt werden sollten.
Fettschrift	Gibt Steuerungen auf dem Bedienfeld oder Objekte auf dem Bildschirm wie
Wort	Menüelemente oder Tasten/Schaltflächen an.
Mausklick	Den Cursor auf die Steuerungen auf der Anzeige bewegen und auf die Taste "Confirm" (Bestätigen) auf dem Bedienfeld drücken.
>	Ein Menüelement oder einen Schlüssel wählen, das/der dem Pfad folgt.

Kontaktinformationen

Hersteller: SonoScape Medical Corp.

Anschrift: Room 201 & 202, 12th Building, Shenzhen Software Park Phase II, 1 Keji Middle 2nd Road, Yuehai Subdistrict, Nanshan District, Shenzhen, 518057, Guangdong, China

Tel: +86-755-26722890 Fax: +86-755-26722850

E-Mail: sonoscape@sonoscape.net

www.sonoscape.com

EU-Vertretung: Shanghai International Holding Corp. GmbH (Europe)

Anschrift: Eiffestrasse 80, 20537 Hamburg, Germany

Tel.: +49-40-2513175 Fax: +49-40-255726

E-Mail: shholding@hotmail.com

Inhalt

1	Allgemeine Anweisungen zu Messungen	1
	1.1 Verwendungszweck	2
	1.2 Messgenauigkeit	2
	1.3 Messsteuerungen	3
	1.4 Messungsmenü	4
	1.5 Feld mit den Messergebnissen	5
	1.6 Messungsvoreinstellungen	6
2	Grundlegende Messungen und Berechnungen	7
	2.1 Messungen im B-Modus	8
	2.1.1 Distanzmessungen	8
	2.1.2 Bereichsmessungen	11
	2.1.3 Volumenmessungen	17
	2.1.4 Winkelmessungen	19
	2.2 M-Modus-Messungen	21
	2.2.1 Distanzmessung	21
	2.2.2 Neigungsmessung	22
	2.2.3 %Stenose-Distanzmessung	23
	2.2.4 Distanzverhältnismessung	24
	2.2.5 Zeitmessung	25
	2.2.6 Herzfrequenzmessung	25
	2.3 Messungen im Farbflussmodus	26
	2.3.1 Doppler-Bereichsmessung	26
	2.3.2 Farbflussmessung	27
	2.3.3 Flussgeschwindigkeitsmessung	28
	2.4 Messungen im Spektral-Doppler-Modus	29
	2.4.1 Geschwindigkeitsmessung	29
	2.4.2 Beschleunigungsmessung	30
	2.4.3 Widerstandsindexmessung	31
	2.4.4 Pulsatilitätsindexmessung	32
	2.4.5 S/D-Verhältnismessung	33

	2.4.6 Automatische Kurvenmessung	34
	2.4.7 Manuelle Kurvenmessung	35
	2.4.8 Zeitmessung	36
	2.4.9 Herzfrequenzmessung	37
3	Gefäßmessungen und -berechnungen	39
	3.1 Messungen im 2D-Modus	
	3.2 M-Modus-Messungen	44
	3.3 Messungen im Spektral-Doppler-Modus	45
4	Geburtshilfemessungen und -berechnungen	47
	4.1 Messungen im 2D-Modus	48
	4.1.1 Allgemeine Messungen	48
	4.1.2 Messung mehrerer Föten	51
	4.1.3 EFW	52
	4.1.4 GA und EDD	52
	4.1.5 AFI	54
	4.2 M-Modus-Messungen	55
	4.3 Messungen im Spektral-Doppler-Modus	56
5	Gynäkologische Messungen und Berechnungen	59
	5.1 Messungen im 2D-Modus	60
	5.1.1 Uterusmessung	60
	5.1.2 Uterusarterienmessung	61
	5.1.3 Ovar-Volumenmessung	61
	5.1.4 Follikelmessung	61
	5.1.5 Fibroidmessung	62
	5.2 M-Modus-Messungen	62
	5.3 Messungen im Spektral-Doppler-Modus	64
6	Abdominale Messungen und Berechnungen	67
	6.1 Messungen im 2D-Modus	68
	6.2 M-Modus-Messungen	70
	6.3 Messungen im Spektral-Doppler-Modus	71
7	Kardiologische Messungen und Berechnungen	73
	7.1 Messungen im B-Modus	
	7.1.1 Linker Ventrikel	74
	7.1.1 Lilikei venuikei	/4

	7.1.2 Volumen des linken Vorhofs	79
	7.1.3 Volumen des rechten Vorhofs	80
	7.1.4 Rechter Ventrikel	81
	7.1.5 Durchmesser des linken Vorhofs/Aortenwurzel-Durchmesser	81
	7.1.6 Durchmesser des links-/rechtsventrikulären Ausflusstrakts	81
	7.1.7 Durchmesser der Mitralklappe	81
	7.1.8 Aortenklappe	82
	7.1.9 Durchmesser der Hauptpulmonalarterie	83
	7.1.10 Durchmesser der Trikuspidalklappe	83
	7.1.11 Durchmesser der Pulmonalklappe	83
	7.1.12 Linksventrikuläre Masse	83
	7.2 Messungen im Farbflussmodus	87
	7.3 M-Modus-Messungen	89
	7.3.1 Bewertung des linken Ventrikels	91
	7.3.2 Berechnung des TEI-Index	94
	7.4 Messungen im Spektral-Doppler-Modus	96
	7.4.1 Aortenklappe	96
	7.4.2 Mitralklappe	100
	7.4.3 Trikuspidalklappe	103
	7.4.4 Pulmonal- und Lebervenen	106
	7.4.5 Pulmonalklappe	107
8	Small-Parts-Messungen und -berechnungen	111
	8.1 Messungen im 2D-Modus	112
	8.2 M-Modus-Messungen	114
	8.3 Messungen im Spektral-Doppler-Modus	115
9	Urologische Messungen und Berechnungen	117
	9.1 Messungen im 2D-Modus	118
	9.2 M-Modus-Messungen	
	9.3 Messungen im Spektral-Doppler-Modus	121
10	Pädiatrische Messungen und Berechnungen	123
	10.1 Hüftgelenkswinkel	
	10.1.1 2D-Semi Auto	
	10.1.2 2D-3Dist	125

	10.2 d-D Ratio (d-D-Verhältnis)	125
11	Messberichte	127
	11.1 Überprüfen des Berichts	128
	11.1.1 Überprüfen des Berichts	128
	11.1.2 Überprüfen eines archivierten Berichts	130
	11.2 Geburtshilfeberichte	130
	11.2.1 Fötale Wachstumskurven	130
	11.2.2 Wachstumsleiste	132
	11.2.3 Vergleich von Föten	133
	11.2.4 Anatomische Untersuchung	134
	11.3 Anzeigen einer Vorschau und Drucken des Berichts	135
	11.3.1 Allgemeiner/Anwendungsspezifischer Messbericht	135
	11.3.2 Strukturierter DICOM-Bericht	136
An	hang Abkürzungen von klinischen Mess- und Berechnungselementen	137

1 Allgemeine Anweisungen zu Messungen

Das System kann Ihnen bei den Diagnoseinformationen zu klinischen Diagnosezwecken helfen, die von den Mess- und Berechnungspaketen bereitgestellt werden. Die Messanzeige variiert je nach Untersuchungstypen und Bildgebungsmodi.

1.1 Verwendungszweck

Das System ist für die folgenden Anwendungen vorgesehen: Fötus, Abdomen, Pädiatrie, kleine Organe (Brust, Hoden, Schilddrüse), Kopf (Neugeborene und Erwachsene), transrektale und transvaginale Anw., periphere Blutgefäße, zerebrale Blutgefäße, Bewegungsapparat (konventionell und oberflächlich), Herz (Kinder und Erwachsene), Gynäkologie/Geburtshilfe und Urologie.

Das System stellt auch die Messungs- und Berechnungspakete bereit, die für klinische Diagnosezwecke verwendet werden.

Kontraindikationen: Das System ist nicht für den ophthalmischen oder einen anderen Einsatz vorgesehen, bei dem der Schallstrahl über das Auge geführt wird.

Warning Bei der Verwendung von Applikationen sind Vorsichtsmaßnahmen zu beachten.

Anderenfalls kann es zu Systemschäden oder schweren Verletzungen kommen.

1.2 Messgenauigkeit

Die vom System bereitgestellten Messungen definieren keinen spezifischen physiologischen oder anatomischen Parameter. Bereitgestellt wird vielmehr eine Messung einer physischen Eigenschaft wie Abstand oder Geschwindigkeit zur Beurteilung durch den Arzt.

HINWEIS:

Bei jeder auf dem System verfügbaren Messung gilt die Messgenauigkeit nur für die unten gezeigten Bereiche. Die folgende Tabelle wird auf Grundlage tatsächlicher Systemtests ohne Berücksichtigung des Schallstrahls bereitgestellt.

Tabelle 1-1 Messgenauigkeit

Parameter	Wertebereich	Fehlerbereich
Display depth (Anzeigentiefe)	Max. 30,0 cm; (Sondenabhängig)	±3%
Distanz	0 ~ 30,0 cm	±3%
Area (Bereich)	Max. ≥855 cm ²	±7%
Winkel	0 bis 88°	±3%
Circumference (Umfang)	160cm	±3%
Volume (Volumen)	Max. 25000 cm ³	±10%
M-Mode time (Zeit M-Modus)	2 s, 4 s, 6 s, 8 s, 10 s	±2%
Herzfrequenz	8 – 1.000 bpm	±3%
Velocity(PW) (Geschwindigkeit (PW))	0,04-2940 cm/s	Angle≤60°, ≤5% (Winkel ≤60°, ≤5%)
Velocity(CW) (Geschwindigkeit (CW))	0,25-3795 cm/s	Angle≤60°, ≤5% (Winkel ≤60°, ≤5%)

To Last

S FR F D 7.5 7.5-10.5 14.0 Vascular 1 D: 2.25 mm 50 50 GN DR Collection Distance PWR 75 Area μS Volume CFM Angle 4.4 Color GN PRF 1.5 WF Med 2Point Length Trace Ratio(D) 4/20 Cine %Sten(D) (• F by F 56 Auto Play Off (• To First

1.3 Messsteuerungen

Exit

Abbildung 1-1 Mess- und Berechnungsbildschirm

Play Mode Order

•

Sie sollten vor der Durchführung einer Messung mit folgenden Tasten vertraut sein. Diese Tasten des Bedienfelds werden wie folgt beschrieben:

Taste	Beschreibung
Calc (Berechnen)	Zum Aktivieren der anwendungsspezifischen Messungs- und Berechnungsfunktionen.
Update (Aktualisieren)	Zum Umschalten zwischen den Messmarkierungen während der Distanz- oder Ellipsenmessung.
Caliper (Messschieber)	Zum Rückgängigmachen der Kurve bei einer manuellen Kurvenmessung. Zum Aktivieren der grundlegenden Messungs- und Berechnungsfunktionen.
Trackball	Zum Auswählen eines Messelements auf dem Bildschirm. Zum Bewegen des Cursors bei der Durchführung einer Messung.
Bestätigen	Zum Bestätigen des aktuellen Vorgangs. Zum Positionieren des Cursors bei der Durchführung einer Messung.
Del (Entf)	Zum Löschen des letzten Mess- und Berechnungsergebnisses.
Clear (Löschen)	Zum Entfernen aller Messergebnisse, Anmerkungen, Pfeile und Bodymarker-Symbole aus der Anzeige.
Pointer (Zeiger)	Zum Aktivieren des Trackball-Cursors.
Report (Bericht)	Zum Öffnen des Bildschirms Measurement Report (Messbericht).

1.4 Messungsmenü

Grundlegende Messungen und anwendungsspezifische Messungen werden im System bereitgestellt.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken, um das grundlegende Messungsmenü auf der linken Seite des LCD-Bildschirms anzuzeigen.
- Die Taste Calc (Berechnen) auf dem Bedienfeld drücken, um das anwendungsspezifische Messungsmenü auf der linken Seite des Bildschirms anzuzeigen. Das Menü zur Gefäßmessung (wie in Abbildung 1-2 dargestellt) dient in der folgenden Beschreibung als Beispiel.

Das gewünschte Menüelement kann über Bewegen des Trackballs ausgewählt werden und durch Drücken der Bestätigungstaste wird eine Messung gestartet.

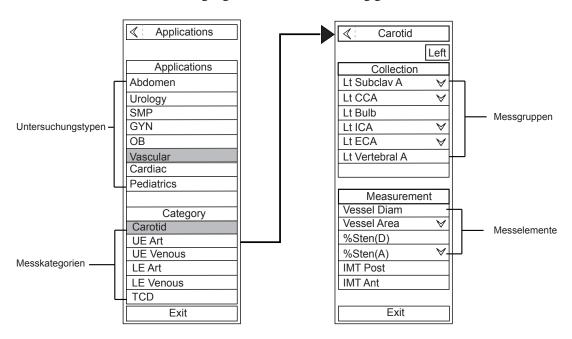


Abbildung 1-2 Messungsmenü

Das Messungsmenü besteht aus vier Teilen, einschließlich Untersuchungstyp, Messkategorie, Messgruppe und Messelement.

Exam type (Untersuchungstyp)
 Die Untersuchungstypen sind unter Applications (Anwendungen) aufgeführt.
 Auf dem Bildschirm auf klicken, um den gewünschten Untersuchungstyp auszuwählen.

Messkategorie und Messerfassung

Messkategorien und -erfassungen sind unter dem gewünschten Untersuchungstyp aufgeführt.

Jede Messkategorie umfasst eine oder mehrere Messerfassungen.

- Auf dem Bildschirm auf Left (Links) klicken, um den Messungsteil auszuwählen.

Messelement

Ein Messelement auswählen, um die jeweilige Messung und Berechnung durchzuführen.

Die rechts neben dem Messelement angezeigte Nummer zeigt die von Ihnen während der anwendungsspezifischen Messung durchgeführten Messzeiten.

- Auf ✔ neben dem Messelement klicken, um die Messmethode auszuwählen.
- Auf ➤ klicken, um die nächste Seite des aktuellen Menüs aufzurufen.

In diesem Kapitel wird lediglich eine allgemeine Anleitung zur Messung und zu den Funktionen der entsprechenden Messelemente gegeben, die in den folgenden Kapiteln erläutert werden.

1.5 Feld mit den Messergebnissen

Die Ergebnisse der Messung werden nach der Durchführung der Messung im Ergebnisfeld angezeigt.

• So verschieben Sie ein Ergebnis:

Sie können ein Ergebnis im Messstatus verschieben.

- a. Den Cursor mit dem Trackball in den oberen Bereich des Ergebnisfelds bewegen und die Bestätigungstaste drücken, wenn der Cursor zum ↔-Symbol wird.
- b. Anschließend das Ergebnisfeld mithilfe des Trackballs an die gewünschte Position bewegen und die Bestätigungstaste drücken.
- So löschen Sie ein Ergebnis:

Auf die Taste **Del** (Entf) auf dem Tastenfeld drücken, um die letzte Messmarkierung, das letzte Ergebnis aus dem Bildschirm und das Ergebnis im Bericht zu löschen.

• So löschen Sie alle Ergebnisse:

Auf die Schaltfläche Clear (Löschen) auf dem Bedienfeld drücken, um alle Messmarkierungen und Ergebnisse aus dem Bildschirm zu löschen. Das Messergebnis bleibt jedoch im Bericht erhalten.

1.6 Messungsvoreinstellungen

Sie können die folgenden Messungseinstellungen im Menü **System Settings** -> **Measure** (Systemeinstellungen -> Messung) vornehmen. Einzelheiten finden Sie im grundlegenden Benutzerhandbuch.

- Festlegen der relevanten Messparameter und Ergebnispositionen
- Festlegen der Messelemente der automatischen und manuellen Kurvenmessung im Spektral-Doppler-Modus
- Auswählen des Koeffizienten der Schilddrüsenvolumen-Formel
- Definieren von Tastenkürzeln für Geburtshilfe-, gynäkologische oder kardiologische Messungen
- Festlegen der Messungsformel für Geburtshilfemessungen
- Hinzufügen und Löschen von Messerfassungen und Elementen sowie Umsortieren der entsprechenden Listen

HINWEIS:

Messungsvoreinstellungen sind vor der Durchführung einer Messung vorzunehmen. Anderweitig treten sie nicht in Kraft.

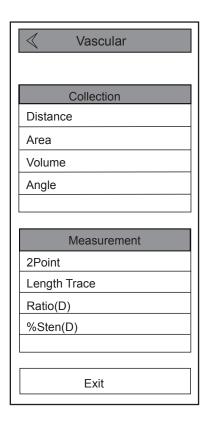
2 Grundlegende Messungen und Berechnungen

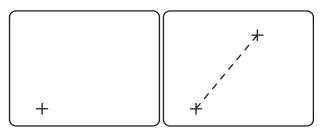
Die grundlegenden Messungen und Berechnungen beziehen sich hauptsächlich auf die Abbildung des Ultraschall-Bildbereichs sowie die Funktionsweise des Messungsmenüs und des Felds mit dem Messergebnis. In der Regel werden die Ergebnisse grundlegender Messungen nicht im Messbericht gespeichert, jedoch werden die anwendungsspezifischen Messungen aus den grundlegenden Messungen erstellt. Dieses Kapitel verwendet eine Gefäßmessung als Beispiel.

Die grundlegenden Messungen bestehen aus Messmenüs in vier Modi: B-Modus, M-Modus, Farbflussmodus und Spektral-Doppler-Modus. Manche Messungen im Farbflussmodus entsprechen den im B-Modus durchgeführten Messungen. Daher werden Vorgänge zu diesen Messungen im Farbflussmodus nicht in diesem Kapitel ausgeführt.

2.1 Messungen im B-Modus

Das grundlegende Messungsmenü im B-Modus wird in der folgenden Abbildung dargestellt.



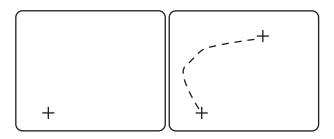

Abbildung 2-1 Grundlegendes Messungsmenü im B-Modus

2.1.1 Distanzmessungen

Die Distanzmessungen im B-Modus umfassen die Zweipunktmessung, die Längenkurvenmessung, die Distanzverhältnismessung und %Stenose-Distanzmessung.

2.1.1.1 Zweipunktmessung

Die Zweipunktmessung im B-Modus wird zur Messung der Distanz zwischen zwei Punkten auf dem Bild verwendet.


- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken; das System startet standardmäßig die Zweipunktmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann eine zweite Markierung angezeigt.
- Die zweite Markierung an die gewünschte Position bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die feste Markierung aktiviert werden.
- 4. Die Bestätigungstaste drücken, um die Messung abzuschließen.
- 5. Die Schritte 2-4 wiederholen, um eine neue Distanzmessung durchzuführen.

D: 9,99 mm

2.1.1.2 Längenkurvenmessung

Die Längenkurvenmessung im B-Modus wird zur Messung der Distanz zwischen zwei Punkten auf dem Bild durch Ziehen einer Linie entlang des Zielobjekts mit dem Trackball verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Length Trace (Längenkurvenmessung) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung mithilfe des Trackballs entlang des Zielobjekts bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die Kurve rückgängig gemacht werden.
- 4. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Das Messergebnis wird wie folgt angezeigt:

L: 3,05 mm

2.1.1.3 Distanzverhältnismessung

Die Distanzverhältnismessung im B-Modus wird zur Messung zweier einzelner Distanzen und zur Berechnung ihres Verhältnisses verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Ratio
 (D) (Verhältnis (D)) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Den Trackball mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann eine zweite Markierung angezeigt.
- 3. Die zweite Markierung an den gewünschten Punkt bewegen und zum Abschließen der ersten Distanzmessung die Bestätigungstaste drücken.
- 4. Die Schritte 2-3 wiederholen, um die zweite Distanzmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
Verhältnis	Verhältnis=D1/D2

Wobei

- D1 die erste Distanz ist.
- D2 die zweite Distanz ist.

Die Messergebnisse werden wie folgt angezeigt:

D1: 1,51 mm
D2: 1,33 mm
D1/D2: 1,14

2.1.1.4 %Stenose-Distanz

Die %Stenose-Distanzmessung im B-Modus wird zur Messung der äußeren und inneren Distanzen und der Stenose% verwendet.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf %Sten (D) (%Stenose (D)) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.

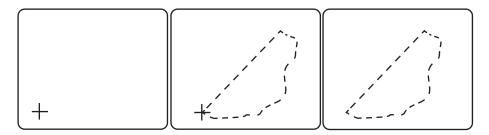
- 3. Die zweite Markierung an den gewünschten Punkt bewegen und zum Abschließen der äußeren Distanzmessung die Bestätigungstaste drücken.
- 4. Die Schritte 2-3 wiederholen, um die innere Distanzmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
%Sten	%Sten= D1-D2 /Max(D1,D2)

Wobei

- D1 die äußere Distanz der Stenose ist.
- D2 die innere Distanz der Stenose ist.

Die Messergebnisse werden wie folgt angezeigt:


D1: 2,28 mm
D2: 1,72 mm
%Sten: 24,68 %

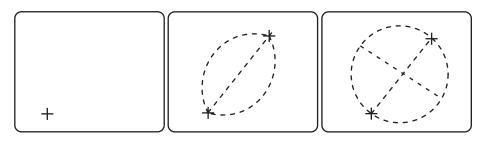
2.1.2 Bereichsmessungen

Bereichsmessungen im B-Modus umfassen die Kurvenbereichsmessung, die Ellipsenbereichsmessung, die Bereichsverhältnismessung und die %Stenose-Bereichsmessung.

2.1.2.1 Kurvenbereichsmessung

Die Kurvenbereichsmessung im B-Modus wird verwendet, um den Umfang und Bereich mithilfe des Trackballs entlang eines blockierten Bereichs auf dem Bild zu messen.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Area (Bereich) im Messungsmenü klicken; das System startet standardmäßig die Kurvenbereichsmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.


- Die zweite Markierung mithilfe des Trackballs entlang des Zielobjekts bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die Kurve rückgängig gemacht werden.
- 4. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Die Messergebnisse werden wie folgt angezeigt:

C: 2,85 mm A: 0.36 cm²

2.1.2.2 Ellipsenbereichsmessung

Die Ellipsenbereichsmessung im B-Modus wird verwendet, um den Umfang und Bereich eines blockierten Bereichs auf dem Bild zu messen.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Area ->
 Ellipse (Bereich -> Ellipse) im Messungsmenü klicken. Auf dem Bildschirm wird
 eine Markierung angezeigt.
- Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Die beiden fixierten Punkte oben definieren eine Achse der zu messenden Ellipse.
 - Mithilfe der Taste **Update** (Aktualisieren) auf dem Bedienfeld können die fixierten Punkte angepasst werden.
- Die andere Achse der Ellipse mithilfe des Trackballs anpassen.
 Mithilfe der Taste Update (Aktualisieren) kann die Position der Ellipse angepasst werden.

5. Zum Bestätigen des Messbereichs die Bestätigungstaste drücken. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
С	$C=\pi \times \min [D1, D2] + 2 \times (\max [D1, D2] - \min [D1, D2])$
A	$A=(\pi/4)\times D1\times D2$

Wobei

- D1 die erste Achsendistanz der Ellipse ist.
- D2 die zweite Achsendistanz der Ellipse ist.

Die Messergebnisse werden wie folgt angezeigt:

D1: 1,06 mm

D2: 2,16 mm

C: 4,43 mm

A: 1,80 cm²

2.1.2.3 Bereichsverhältnismessung

Die Bereichsverhältnismessung im B-Modus wird zur Messung zweier blockierter Bereiche und zur Berechnung ihres Verhältnisses verwendet. Für diese Messung stehen Ellipsen- und Kurvenmethoden zur Verfügung.

■ Ellipsenmethoden

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Area ->
 Ratio(A) -> 2D-Dbl. Ellipse (Bereich -> Ratio(A) -> Doppelte 2D-Ellipsenmessung)
 im Messungsmenü auswählen. Eine Markierung erscheint dann auf dem Bildschirm.
- Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Die beiden fixierten Punkte oben definieren eine Achse der ersten zu messenden Ellipse.
 - Mithilfe der Taste **Update** (Aktualisieren) auf dem Bedienfeld können die fixierten Punkte angepasst werden.
- Die andere Achse der ersten Ellipse mithilfe des Trackballs anpassen.
 Mithilfe der Taste Update (Aktualisieren) kann die Position der Ellipse angepasst werden.
- 5. Die Bestätigungstaste drücken, um die erste Bereichsmessung abzuschließen.
- 6. Die Schritte 2-5 wiederholen, um die zweite Bereichsmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
A1	$A1 = (\pi/4) \times D11 \times D12$
A2	$A2=(\pi/4)\times D21\times D22$
A1/A2	A1/A2= A1/A2

Wobei

- D₁₁ ist die erste Achsendistanz der ersten Ellipse.
- D₁₂ ist die zweite Achsendistanz der ersten Ellipse.
- D₂₁ ist die erste Achsendistanz der zweiten Ellipse.
- D₂₂ ist die zweite Achsendistanz der zweiten Ellipse.

Die Messergebnisse werden wie folgt angezeigt:

A2: 0.57 cm²

A1/A2: 1,57

■ Kurvenmethode

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Area -> Ratio(A) -> 2D-Dbl. Trace (Bereich -> Verhältnis (A) -> Doppelte 2D-Kurvenmessung) im Messungsmenü klicken. Eine Markierung erscheint dann auf dem Bildschirm.
- 2. Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung mithilfe des Trackballs entlang des Zielobjekts bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die Kurve rückgängig gemacht werden.
- 4. Die Bestätigungstaste drücken, um die erste Bereichsmessung abzuschließen.
- 5. Die Schritte 2-4 wiederholen, um die zweite Bereichsmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis.

Die Messergebnisse werden wie folgt angezeigt:

A1: 0.90 cm²

A2: 0.57 cm²

A1/A2: 1,57

2.1.2.2 %Stenosis Area (%Stenosen-Bereich)

Die %Stenose-Bereichsmessung im B-Modus wird zur Messung der inneren und äußeren Bereiche und des %Stenose-Bereichs verwendet. Für diese Messung stehen Ellipsen- und Kurvenmethoden zur Verfügung.

■ Ellipsenmethode

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Area -> %Sten (A) -> 2D-Dbl. Ellipse (Bereich -> %Sten (A) -> Doppelte 2D-Ellipsenmessung) im Messungsmenü auswählen. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.

- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Die beiden fixierten Punkte oben definieren eine Achse der ersten zu messenden Ellipse.
 - Mithilfe der Taste **Update** (Aktualisieren) auf dem Bedienfeld können die fixierten Punkte angepasst werden.
- Die andere Achse der ersten Ellipse mithilfe des Trackballs anpassen.
 Mithilfe der Taste Update (Aktualisieren) kann die Position der Ellipse angepasst werden.
- 5. Die Bestätigungstaste drücken, um die äußere Bereichsmessung abzuschließen.
- 6. Die Schritte 2-5 wiederholen, um die innere Bereichsmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
A1	$A1=(\pi/4)\times D_{11}\times D_{12}$
A2	$A2=(\pi/4)\times D_{21}\times D_{22}$
%Sten	%Sten= A1-A2 /Max(A1,A2)

Wobei

- D₁₁ ist die erste Achsendistanz der ersten Ellipse.
- D₁₂ ist die zweite Achsendistanz der ersten Ellipse.
- D₂₁ ist die erste Achsendistanz der zweiten Ellipse.
- D₂₂ ist die zweite Achsendistanz der zweiten Ellipse.

Die Messergebnisse werden wie folgt angezeigt:

A1: 0.76 cm²

A2: 0.72 cm²

%Sten: 4,80 %

■ Kurvenmethode

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und dann auf Area -> %Sten(A) -> 2D-Dbl. Trace (Bereich -> %Sten(A) -> Doppelte 2D-Kurvenmessung) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- 2. Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung mithilfe des Trackballs entlang des Zielobjekts bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die Kurve rückgängig gemacht werden.
- 4. Die Bestätigungstaste drücken, um die äußere Bereichsmessung abzuschließen.
- 5. Die Schritte 2-4 wiederholen, um die innere Bereichsmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis.

Die Messergebnisse werden wie folgt angezeigt:

A1: 0.27 cm²

A2: 0.16 cm²

%Sten: 38.22 %

2.1.3 Volumenmessungen

Die Volumenmessungen im B-Modus umfassen die dreifache Distanzmessung und die Ellipsen+Distanzmessung.

2.1.3.1 Dreifache Distanzmessung

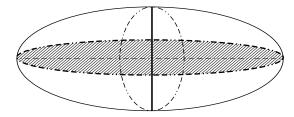
Die dreifache Distanzmessung wird verwendet, um das Volumen eines quaderförmigen Objekts durch Messung der Länge, Höhe und Breite zu messen.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Volume (Volumen) im Messungsmenü, klicken; das System startet standardmäßig die dreifache Distanzmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- 2. Zwei Distanzmessungen für Länge und Breite durchführen.
- 3. Ein senkrechtes Bild erneut auf das vorherige Bild scannen.
- 4. Eine Distanzmessung zur Höhe durchführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
V	$V = (1/6) \times \pi \times D1 \times D2 \times D3$

Wobei

- D1 die Länge ist.
- D2 die Breite ist.
- D3 die Höhe ist.


Die Messergebnisse werden wie folgt angezeigt:

D1: 0,69 mm
D2: 0,97 mm
D3: 1,07 mm
V: 0.37 cm³

2.1.3.2 Ellipsen+Distanzmessung

Die Ellipsen+Distanzmessung im B-Modus wird zur Messung des Volumens eines ovalen Objekts verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Volume ->
 Ellipse+Dist (Volumen -> Ellipse und Distanz) im Messungsmenü klicken. Auf dem
 Bildschirm wird eine Markierung angezeigt.
- Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Die beiden fixierten Punkte oben definieren eine Achse der Ellipse.

Mithilfe der Taste **Update** (Aktualisieren) auf dem Bedienfeld können die fixierten Punkte angepasst werden.

- 4. Die andere Achse der Ellipse mithilfe des Trackballs anpassen.
 - Mithilfe der Taste **Update** (Aktualisieren) kann die Position der Ellipse angepasst werden.
- 5. Zum Bestätigen die Bestätigungstaste drücken.
- 6. Ein Bild erneut scannen, das senkrecht zum vorherigen Bild steht.
- 7. Eine Distanzmessung zur Höhe durchführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
V	$V = (1/6) \times \pi \times D1 \times D2 \times D3$

Wobei

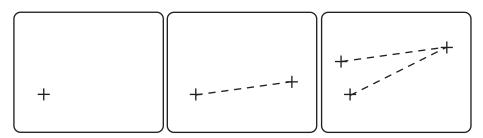
- D1 die erste Achsendistanz der Ellipse ist.
- D2 die zweite Achsendistanz der Ellipse ist.
- D3 ist die Höhe des Objekts.

Die Messergebnisse werden wie folgt angezeigt:

D1: 1,13 mm

D2: 1,24 mm

D3: 1,05 mm

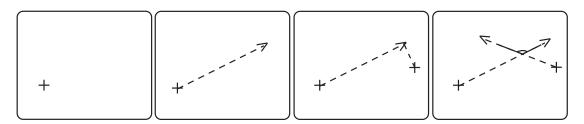

V: 0.78 cm³

2.1.4 Winkelmessungen

Die Winkelmessungen im B-Modus umfassen die Dreipunktwinkelmessung und die Zweilinienwinkelmessung.

2.1.4.1 Dreipunktwinkelmessung

Die Dreipunktwinkelmessung im B-Modus wird zur Messung des Winkels durch Festlegung dreier Punkte auf zwei sich kreuzenden Ebenen verwendet. Der Bereich dieses Winkels ist 0°-180°.



- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Angle (Winkel) im Messungsmenü, drücken; das System startet standardmäßig die Dreipunktwinkelmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- 2. Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Eine dritte Markierung wird angezeigt.
- 4. Die dritte Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken. Das System berechnet automatisch das Ergebnis.

Angle: 37.01°

2.1.4.2 Zweilinienwinkelmessung

Die Zweilinienwinkelmessung im B-Modus wird zur Messung des Winkels zwischen zwei Linien auf zwei sich kreuzenden Ebenen verwendet. Der Bereich des Winkels ist 0°-180°.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Angle ->
 2Line (Winkel -> 2Linien) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.

- Die zweite Markierung an die gewünschten Punkte bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die feste Markierung aktiviert werden.
- 4. Die Bestätigungstaste drücken, um die erste Linie zu bestätigen.
- 5. Die Schritte 2-4 wiederholen, um die zweite Linie zu bestätigen. Das System berechnet dann automatisch das Ergebnis.

Angle: 37.01°

2.2 M-Modus-Messungen

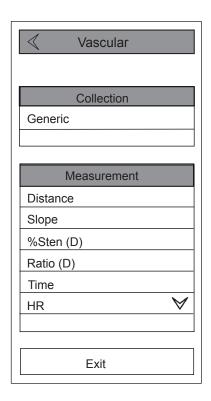
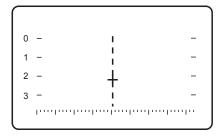
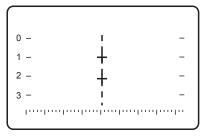




Abbildung 2-2 Grundlegendes Messungsmenü im M-Modus

2.2.1 Distanzmessung

Die Distanzmessung im M-Modus wird zur Messung der vertikalen Distanz zwischen zwei Punkten auf dem Bild verwendet.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken; das System startet standardmäßig die Distanzmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- 2. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken.

D: 7,51mm

2.2.2 Neigungsmessung

Die Neigungsmessung im M-Modus wird zur Messung der Veränderungen bei der Distanz im Laufe der Zeit verwendet.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Slope (Neigung) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann eine zweite Markierung angezeigt.
- 3. Die zweite Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Das System berechnet automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
V	V=(D/10)/(T/1000)

Wobei

- D die Distanz ist.
- T die Zeit ist.

Die Messergebnisse werden wie folgt angezeigt:

D: 12 mm

T: 808,0 ms

V: 1,49 cm/s

2.2.3 %Stenose-Distanzmessung

Die %Stenose-Distanzmessung im M-Modus wird zur Messung der vertikalen inneren und äußeren Distanzen und zur Berechnung der %Stenose verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste **Caliper** (Messschieber) auf dem Bedienfeld drücken und auf **%Sten (D)** im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an den gewünschten Punkt bewegen und zum Abschließen der äußeren Distanzmessung die Bestätigungstaste drücken.
- 4. Die Schritte 2-3 wiederholen, um die innere Distanzmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
%Sten	%Sten= D1-D2 /Max(D1,D2)

Wobei

- D1 die äußere Distanz der Stenose ist.
- D2 die innere Distanz der Stenose ist.

Die Messergebnisse werden wie folgt angezeigt:

D1: 2,28 mm
D2: 1,72 mm
%Sten: 24,68 %

2.2.4 Distanzverhältnismessung

Die Distanzverhältnismessung im M-Modus wird zur Messung zweier vertikaler Distanzen zwischen zwei Punkten auf dem Bild und zur Berechnung ihres Verhältnisses verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

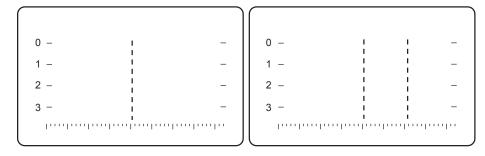
- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Ratio

 (D) (Verhältnis (D)) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Den Trackball mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann eine zweite Markierung angezeigt.
- 3. Die zweite Markierung an den gewünschten Punkt bewegen und zum Abschließen der ersten Distanzmessung die Bestätigungstaste drücken.
- 4. Die Schritte 2-3 wiederholen, um die zweite Distanzmessung durchzuführen. Das System berechnet dann automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
Verhältnis	Verhältnis=D1/D2

Wobei

- D1 die erste Distanz ist.
- D2 die zweite Distanz ist.


Die Messergebnisse werden wie folgt angezeigt:

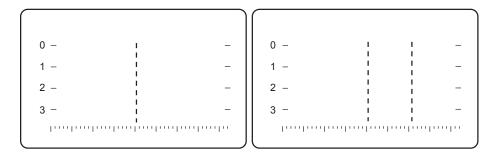
D1: 1,51 mm D2: 1,33 mm D1/D2: 1,14

2.2.5 Zeitmessung

Die Zeitmessung im M-Modus wird zur Messung eines horizontalen Zeitintervalls zwischen zwei Punkten auf dem Bild verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste **Caliper** (Messschieber) auf dem Bedienfeld drücken und auf **Time** (Zeit) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken.


Das Messergebnis wird wie folgt angezeigt:

T: 1.46 s

2.2.6 Herzfrequenzmessung

Die Herzfrequenzmessung im M-Modus wird verwendet, um das Zeitintervall zwischen Herzzyklen zu messen (die Zahl der Herzzyklen liegt unter 10) und die Zahl der Herzschläge pro Minute zu berechnen.

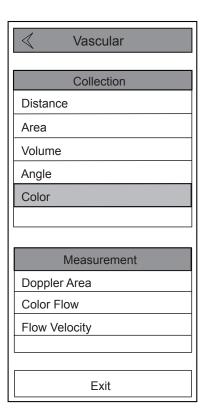
Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

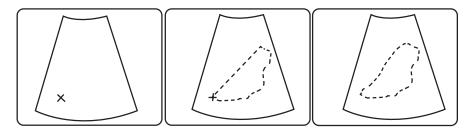
 Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf HR im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
 Sie können auf M neben HR klicken, um die Herzzyklen einzustellen.

- 2. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken.

HR: 82 bpm

2.3 Messungen im Farbflussmodus




Abbildung 2-3 Grundlegendes Messungsmenü im Farbflussmodus

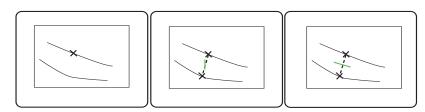
Allgemeine Messungen im Farbflussmodus können wie diejenigen im B-Modus durchgeführt werden. Nur die Doppler-Bereichsmessung, die Farbflussmessung und die Flussgeschwindigkeitsmessung werden in diesem Abschnitt beschrieben. Andere Messungen sind in Abschnitt 2.1 Messungen im B-Modus aufgeführt.

2.3.1 Doppler-Bereichsmessung

Die Doppler-Bereichsmessung im Farbflussmodus wird zur Messung des Umfangs und Bereichs eines geschlossenen Objekts durch Verwendung des Trackballs entlang des Zielobjekts verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Auf die Taste Caliper (Messschieber) auf dem Bedienfeld drücken, um das Messungsmenü anzuzeigen.
- 2. Auf **Color** (Farbe) klicken; das System startet standardmäßig die Doppler-Bereichsmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- 3. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung entlang des Zielobjekts bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die Kurve rückgängig gemacht werden.
- 5. Die Bestätigungstaste zu einem beliebigen Zeitpunkt drücken, um den Messbereich zu bestätigen und die Messung abzuschließen.


Die Messergebnisse werden wie folgt angezeigt:

C: 3,19 mm A: 0.42 cm²

2.3.2 Farbflussmessung

Die Farbflussmessung im Farbflussmodus wird zur Schätzung des zu diesem Bereich berechneten Blutflussvolumens verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Color ->
Color Flow (Farbe -> Farbfluss) im Messungsmenü klicken. Auf dem Bildschirm
wird eine Markierung angezeigt.

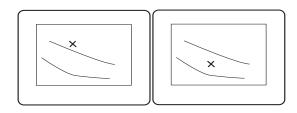
- 2. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Zu diesem Zeitpunkt wird auf dem Bildschirm eine bewegliche Linie angezeigt, die parallel zum Ultraschallstrahl des Ankers mit einem 0°-Winkel verläuft.
 - Die Taste **Angle** (Winkel) am Bedienfeld drehen, damit der Fluss in der gleichen Richtung wie der gewünschte Flussanker verläuft. Der Bereich des Winkels ist -72° bis 72°.
- 3. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Die Messergebnisse werden wie folgt angezeigt:

Flow Angle: -44

D: 39,88 mm

Vmax: 0,00 cm/s


Vmean: 0,00 cm/s

Vol. V: 0.00 cm³/s

2.3.3 Flussgeschwindigkeitsmessung

Die Flussgeschwindigkeitsmessung im Farbflussmodus wird zur Messung der Geschwindigkeit an einem Punkt im Gefäß verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Color ->
 Flow Velocity (Farbe -> Flussgeschwindigkeit) im Messungsmenü klicken. Auf dem
 Bildschirm wird eine Markierung angezeigt.
- Die Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste auf dem Bedienfeld drücken.

Das Messergebnis wird wie folgt angezeigt:

Vel. (Geschw.): 39,10cm/s

2.4 Messungen im Spektral-Doppler-Modus

Messungen im Spektral-Doppler-Modus sind im PW/CW-Modus verfügbar.

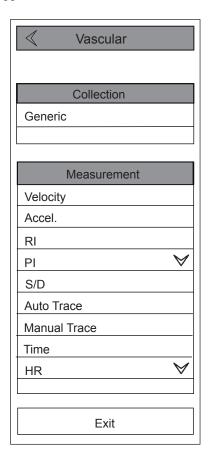
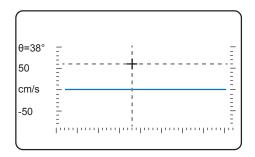



Abbildung 2-4 Grundlegendes Messungsmenü im Spektral-Doppler-Modus

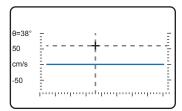
2.4.1 Geschwindigkeitsmessung

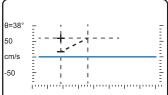
Die Geschwindigkeitsmessung im Spektral-Doppler-Modus wird zur Messung der Geschwindigkeit und des Druckgradienten (Pressure Gradient, PG) eines Punkts auf dem Doppler-Modusbild verwendet.

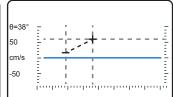
- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken; das System startet standardmäßig die Geschwindigkeitsmessung. Eine Markierung wird auf dem Bildschirm angezeigt.
- 2. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste auf dem Bedienfeld drücken.

Berechnungselement	Formel
PG	$PG=4\times(Vel/100)^2$

Wobei


Vel die Flussgeschwindigkeit ist.


Die Messergebnisse werden wie folgt angezeigt:


Vel. (Geschw.): 43,67 cm/s PG: 0,76 mmHg

2.4.2 Beschleunigungsmessung

Die Beschleunigungsmessung im Spektral-Doppler-Modus wird zur Berechnung der Flussgeschwindigkeitsdifferenz zweier gemessener Flussgeschwindigkeiten im Zeitintervall verwendet.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Accel. (Beschleunigung) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Das System berechnet automatisch das Ergebnis mithilfe folgender Formel.

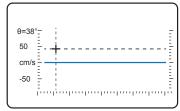
Berechnungselement	Formel
Accel	Accel=(Vel2-Vel1)/T

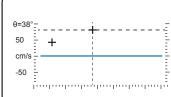
Wobei

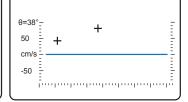
- Vel1 die Geschwindigkeit der Startposition ist.
- Vel2 die Geschwindigkeit der Endposition ist.
- T die Zeit ist.

Die Messergebnisse werden wie folgt angezeigt:

Vel1: 33,28 cm/s Vel2: 65,16 cm/s


T: 85 ms


Accel: 375.16 cm/s²


2.4.3 Widerstandsindexmessung

Die Widerstandsindexmessung im Spektral-Doppler-Modus wird zur Messung der maximalen systolischen und der enddiastolischen Geschwindigkeit, zur Berechnung des Widerstandsindex und des Verhältnisses zwischen maximaler Systole und Enddiastole verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste **Caliper** (Messschieber) auf dem Bedienfeld drücken und auf **RI** im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs auf die maximale Systole bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung auf die Enddiastole bewegen und zum Bestätigen die Bestätigungstaste drücken. Das System berechnet automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel	
RI	RI=(PS-ED)/PS	

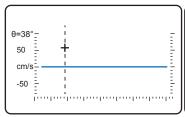
Wobei

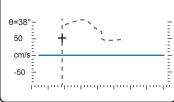
- PS die maximale systolische Geschwindigkeit ist.
- ED die enddiastolische Geschwindigkeit ist.

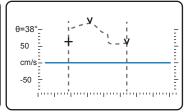
Die Messergebnisse werden wie folgt angezeigt:

PS: 46,16 cm/s

ED: 86,09 cm/s


RI: -0,86


2.4.4 Pulsatilitätsindexmessung


Die Pulsatilitätsindexmessung im Spektral-Doppler-Modus wird zur Messung der maximalen systolischen und enddiastolischen Geschwindigkeit und zur Berechnung der zeitlich gemittelten maximalen Geschwindigkeit sowie des Pulsatilitätsindex verwendet. Für diese Messung stehen automatische und manuelle Kurvenmethoden zur Verfügung.

■ Manual Trace (Manuelle Kurvenmessung)

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf PI -> D-Trace (M) (PI -> D-Kurve (M)) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- 2. Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung zur Verfolgung der Wellenform mithilfe des Trackballs verwenden.
 - Die Wellenform kann mithilfe des Trackballs auf gleichem Wege entlang der ursprünglichen Kurve zurückverfolgt werden.
- 4. Zum Bestätigen die Bestätigungstaste drücken. Das System berechnet die Ergebnisse automatisch mithilfe folgender Formel.

Berechnungselement	Formel	
TAmax	TAmax=(∑Vpeakt)/T	
PI	PI=(PS-ED)/TAmax	

Wobei

- PS die maximale systolische Geschwindigkeit ist.
- ED die enddiastolische Geschwindigkeit ist.

Die Messergebnisse werden wie folgt angezeigt:

PS: 71,98 cm/s ED: 66,49 cm/s

TAmax: 63,57 cm/s

PI: 0,03

■ Auto Trace (Automatische Kurvenmessung)

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf PI -> D-Trace
 (A) (PI -> D-Spur (A)) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- 2. Die Markierung mithilfe des Trackballs an den gewünschten Punkt bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Das System berechnet die Ergebnisse automatisch mithilfe folgender Formel.

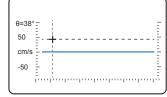
Berechnungselement	Formel	
TAmax	$TAmax = (\sum Vpeakt)/T$	
PI	PI=(PS-ED)/TAmax	

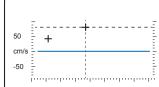
Wobei

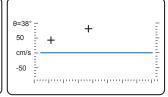
- PS die maximale systolische Geschwindigkeit ist.
- ED die enddiastolische Geschwindigkeit ist.

Die Messergebnisse werden wie folgt angezeigt:

PS: 71,98 cm/s


ED: 66,49 cm/s


TAmax: 63,57 cm/s


PI: 0,03

2.4.5 S/D-Verhältnismessung

Die S/D-Verhältnismessung im Spektral-Doppler-Modus wird zur Messung der maximalen systolischen und der enddiastolischen Geschwindigkeit sowie zur Berechnung ihres Verhältnisses verwendet.

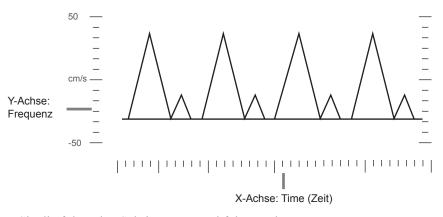
- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf S/D im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- 2. Die Markierung mithilfe des Trackballs auf die maximale Systole bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.

 Die zweite Markierung auf die Enddiastole bewegen und zum Bestätigen die Bestätigungstaste drücken. Das System berechnet automatisch das Ergebnis mithilfe folgender Formel.

Berechnungselement	Formel
S/D	S/D= PS/ED

Wobei

- PS die maximale systolische Geschwindigkeit ist.
- ED die enddiastolische Geschwindigkeit ist.


Die Messergebnisse werden wie folgt angezeigt:

PS: 50,53 cm/s ED: 21,83 cm/s

S/D: 2,31

2.4.6 Automatische Kurvenmessung

Die automatische Kurvenmessung im Spektral-Doppler-Modus wird zur Messung der Geschwindigkeit, des Druckgradienten (PG) oder anderer Indizes zur klinischen Diagnose verwendet, während das System automatisch eine oder mehrere Doppler-Kurven zeichnet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die entsprechende Funktionstaste f
 ür Auto Trace (Automatische Kurvenmessung)
 im aktivierten PW/CW-Modus drehen, um die Funktion zu aktivieren. Das System
 schließt die Messung automatisch ab.
- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und im eingefrorenen PW/CW-Modus auf Auto Trace (Automatische Kurvenmessung) im Messungsmenü klicken. Das System schließt die Messung automatisch ab. Anschließend zum Bestätigen die Bestätigungstaste drücken.

Die Messergebnisse werden wie folgt angezeigt:

PS: -122,72 cm/s

ED: 0,00 cm/s

RI: 1,00

PI: 383,49

S/D: *****

AT: 148,00 ms

DT: 4.00 ms

TAmax: 0,36 cm/s

TAmean: 0,36 cm/s

PG: 6.02 mmHg

MG: 0.03 mmHg

VTI: 0,38 cm HR: 35 bpm

2.4.7 Manuelle Kurvenmessung

Die manuelle Kurvenmessung im Spektral-Doppler-Modus wird zur Messung der Geschwindigkeit, des Druckgradienten (PG) oder anderer Indizes zur klinischen Diagnose verwendet, indem Sie eine oder mehrere Doppler-Kurven zeichnen.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf Manual Trace (Manuelle Kurvenmessung) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs auf die minimale Enddiastole bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- Die zweite Markierung zum Verfolgen der Wellenform mit dem Trackball bewegen.
 Dann wird automatisch eine Spitze vom System markiert.
 - Die Wellenform kann mithilfe des Trackballs auf gleichem Wege entlang der ursprünglichen Kurve zurückverfolgt werden.
- 4. Die zweite Markierung mithilfe des Trackballs auf die minimale Diastole ziehen, die einen Herzzyklus neben der ersten Markierung liegt, und die Bestätigungstaste drücken, um die Messung abzuschließen.

Berechnungselement	Formel	
S/D	S/D=PS/ED	
PI	PI=(PS-ED)/TAmax	

Berechnungselement	Formel
RI	RI=(PS-ED)/PS
TAmax	TAmax=∑Vpv
TAmean	TAmean=∑Vmv
PG	$PG=4\times(PS/100)^2$
MG	$MG = \int_{T_a}^{T_b} 4(V(t))^2 dt / (T_b - T_a)$
HR	HR=60/T
VTI	$VTI = \int_{T_a}^{T_b} V(t) dt$

Wobei

- PS die maximale systolische Geschwindigkeit ist.
- ED die enddiastolische Geschwindigkeit ist.
- TAmax die zeitlich gemittelte maximale Geschwindigkeit ist.
- T die Zeit ist.

Die Messergebnisse werden wie folgt angezeigt:

PS: -122,72 cm/s

ED: 0,00 cm/s

RI: 1,00

PI: 383,49

S/D: *****

AT: 148,00 ms

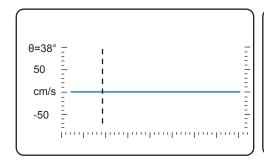
DT: 4.00 ms

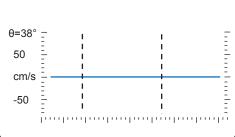
TAmax: 0,36 cm/s

TAmean: 0,36 cm/s

PG: 6.02 mmHg

MG: 0.03 mmHg

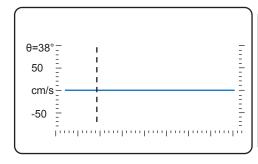

VTI: 0,38 cm

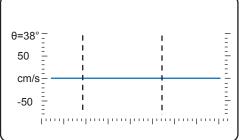

HR: 35 bpm

2.4.8 Zeitmessung

Die Zeitmessung im Spektral-Doppler-Modus wird zur Messung des horizontalen Zeitintervalls zwischen zwei Punkten auf dem Bild verwendet.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.




- 1. Die Taste **Caliper** (Messschieber) auf dem Bedienfeld drücken und auf **Time** (Zeit) im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.
- 3. Die zweite Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken.

Das Messergebnis wird wie folgt angezeigt:

2.4.9 Herzfrequenzmessung

Die Herzfrequenzmessung im Spektral-Doppler-Modus wird verwendet, um das Zeitintervall zwischen Herzzyklen zu messen (die Zahl der Herzzyklen liegt unter 10) und die Zahl der Herzschläge pro Minute zu berechnen.

- Die Taste Caliper (Messschieber) auf dem Bedienfeld drücken und auf HR im Messungsmenü klicken. Auf dem Bildschirm wird eine Markierung angezeigt.
 Sie können auf M neben HR klicken, um die Herzzyklen einzustellen.
- 2. Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Auf dem Bildschirm wird dann die zweite Markierung angezeigt.

3. Die zweite Markierung an die gewünschte Position bewegen und zum Abschließen der Messung die Bestätigungstaste drücken.

Das Messergebnis wird wie folgt angezeigt:

HR: 82 bpm

3 Gefäßmessungen und -berechnungen

Gefäßmessungen und -berechnungen sind im 2D-Modus (B/CFM/PDI/TDI), im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

3.1 Messungen im 2D-Modus

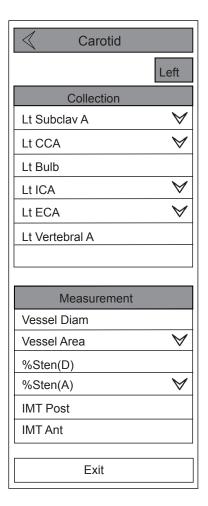


Abbildung 3-1 Gefäßmessungsmenü im 2D-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **Vascular** (Gefäß) im Messungsmenü klicken und eine Messkategorie auswählen, wie z. B. **Carotid** (Halsschlagader).
- 3. Eine Messerfassung wie Lt Subclav A (Unterschlüsselbeinarterie, links) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten.

Messkategorie	Messerfassung	Messelement	Messmethode
Carotid	Lt(Rt) Subclav A (Unterschlüsselbeinarterie, links) Lt(Rt) CCA Lt(Rt) Bulb Lt(Rt) ICA Lt(Rt) ECA Lt(Rt) Vertebral A	Vessel Diam (Gefäßdurchmesser) Vessel Area (Gefäßbereich) %Sten(D) %Sten(A) IMT Post. IMT Ant.	 Einzelheiten zur Gefäßdurchmessermessung finden Sie in Abschnitt 2.1.1.1 Zweipunktmessung. Die Gefäßbereichsmessung ist in Abschnitt 2.1.2.1 Kurvenbereichsmessung und 2.1.2.2 Ellipsenbereichsmessung erläutert.
UE Art UE Venous	Lt(Rt) Innom A Lt(Rt) Subclav A (Unterschlüsselbeinarterie, links) Lt(Rt) Axill A Lt(Rt) Brach A Lt(Rt) Brach A Lt(Rt) Ulnar A Lt(Rt) Sup Palm A Lt(Rt) Deep Palm A Lt(Rt) Innom V Lt(Rt) Subclav V (Unterschlüsselbeinvene, links) Lt(Rt) Int Jugular V Lt(Rt) Axill V Lt(Rt) Ceph V Lt(Rt) Basilic V Lt(Rt) Brach V Lt(Rt) Med Cub V		 Die %Stenosen- Durchmessermessung ist in Abschnitt 2.1.1.4 %Stenose- Distanz erläutert. Die %Stenosen- Bereichsmessung ist in Abschnitt 2.1.2.2 %Stenosis Area (%Stenosen-Bereich) erläutert. Auf IMT Post/IMT Ant unter einer Messerfassung klicken. Anschließend wird eine Markierung auf dem Bildschirm angezeigt. Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Eine zweite Markierung wird auf dem Bildschirm angezeigt. Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen der ROI die Bestätigungstaste drücken. Das System berechnet
	Lt(Rt) Rad V Lt(Rt) Ulnar V		automatisch die Ergebnisse.

Messkategorie	Messerfassung	Messelement	Messmethode
LE Art	Lt(Rt) Com Iliac A	Vessel Diam	Einzelheiten zur Messung
	Lt(Rt) Ext Iliac A	(Gefäßdurchmesser)	des Gefäßdurchmessers sind Abschnitt 2.1.1.1,
	Lt(Rt) Int Iliac A	Vessel Area (Gefäßbereich)	"Zweipunktmessung" zu
	Lt(Rt) Com Fem A	%Sten(D)	entnehmen.
	Lt(Rt) SFA	%Sten(A)	Einzelheiten zur Messung des Gefäßbereichs
	Lt(Rt) PFA	IMT Post.	sind Abschnitt 2.1.2.1,
	Lt(Rt) Popl A	IMT Ant.	"Kurvenbereichsmessung"
	Lt(Rt) Ant Tib A		und Abschnitt 2.1.2.2, "Ellipsenbereichsmessung" zu
	Lt(Rt) Post Tib A		entnehmen.
	Lt(Rt) Peron A		Die %Stenosen- Durchmessermessung ist in
	Lt(Rt) Dors Ped A		Abschnitt 2.1.1.4, "%Stenose-
LE Venös	Lt(Rt) IVC		Distanz" erläutert.
	Lt(Rt) Com Iliac V		Die %Stenosen- Bereichsmessung ist
	Lt(Rt) Ext Iliac V		in Abschnitt 2.1.2.4,
	Lt(Rt) Int Iliac V		"%Stenosen-Bereich"
	Lt(Rt) Com Fem V		erläutert.
	Lt(Rt) SFV		Auf IMT Post/IMT Ant unter einer Messerfassung
	Lt(Rt) PFV		klicken. Anschließend wird eine Markierung auf dem
	Lt(Rt) Popl V		Bildschirm angezeigt.
	Lt(Rt) Ant Tib V		2. Die Markierung an die
	Lt(Rt) Post Tib V		gewünschte Position bewegen
	Lt(Rt) Peron V		und zum Bestätigen die Bestätigungstaste drücken.
	Lt(Rt) GSV Thigh		Eine zweite Markierung wird
	Lt(Rt) GSV Calf		auf dem Bildschirm angezeigt.
	Lt(Rt) LSV		3. Die zweite Markierung an die gewünschte Position bewegen und zum Bestätigen der ROI die Bestätigungstaste drücken. Das System berechnet automatisch die Ergebnisse.

Messkategorie	Messerfassung	Messelement	Messmethode
TCD	Lt MCA Lt ACA Lt AComA Lt PCA Lt PComA Lt ICA Lt Siphon Lt Ophthaimic A Bas A	Vessel Diam (Gefäßdurchmesser) Vessel Area (Gefäßbereich) %Sten(D) %Sten(A) IMT Post. IMT Ant.	 Einzelheiten zur Messung des Gefäßdurchmessers sind Abschnitt 2.1.1.1, "Zweipunktmessung" zu entnehmen. Einzelheiten zur Messung des Gefäßbereichs sind Abschnitt 2.1.2.1, "Kurvenbereichsmessung" und Abschnitt 2.1.2.2, "Ellipsenbereichsmessung" zu entnehmen. Die %Stenosen-Durchmessermessung ist in Abschnitt 2.1.1.4, "%Stenose-Distanz" erläutert. Die %Stenosen-Bereichsmessung ist in Abschnitt 2.1.2.4, "%Stenosen-Bereichsmessung ist in Abschnitt 2.1.2.4, "%Stenosen-Bereich" erläutert. Auf IMT Post/IMT Ant unter einer Messerfassung klicken. Anschließend wird eine Markierung auf dem Bildschirm angezeigt. Die Markierung an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste drücken. Eine zweite Markierung an die gewünschte Position bewegen und zum Bestätigen der ROI die Bestätigungstaste drücken. Das System berechnet automatisch die Ergebnisse.

3.2 M-Modus-Messungen

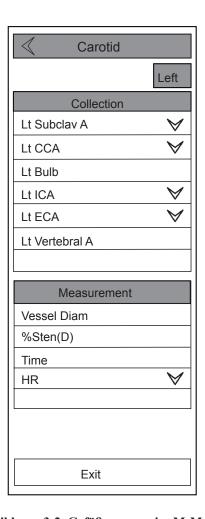


Abbildung 3-2 Gefäßmessung im M-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf **Vascular** (Gefäß) im Messungsmenü klicken und eine Messkategorie auswählen, wie z. B. **Carotid** (Halsschlagader).
- 3. Eine Messerfassung wie Lt Subclav A (Unterschlüsselbeinarterie, links) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten. Die Messkategorien und Messerfassungen im M-Modus entsprechen denjenigen im 2D-Modus, daher werden sie in diesem Abschnitt nicht erläutert. Die Messelemente jeder Messerfassung sind unten dargestellt.

Messelement	Messmethode
Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose-Distanzmessung zu entnehmen.
Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.

3.3 Messungen im Spektral-Doppler-Modus

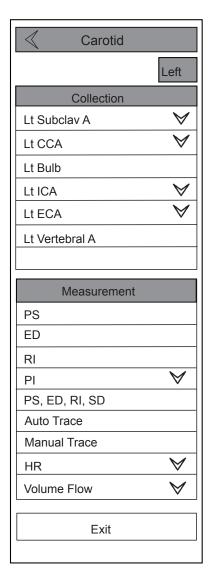


Abbildung 3-3 Gefäßmessungsmenü im Spektral-Doppler-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf **Vascular** (Gefäß) im Messungsmenü klicken und eine Messkategorie auswählen, wie z. B. **Carotid** (Halsschlagader).
- 3. Eine Messerfassung wie Lt Subclav A (Unterschlüsselbeinarterie, links) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten. Die Messkategorien und Messerfassungen im PW/CW-Modus entsprechen denjenigen im 2D-Modus, daher werden sie in diesem Abschnitt nicht erläutert. Die Messelemente jeder Messerfassung sind unten dargestellt.

Messelement	Messmethode		
PS	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu		
ED	entnehmen.		
RI	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.		
PI	Einzelheiten sind Abschnitt 2.4.4 Pulsatilitätsindexmessung zu entnehmen.		
PS,ED,RI,SD	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.		
Auto Trace	Einzelheiten sind Abschnitt 2.4.6 Automatische		
(Automatische	Kurvenmessung zu entnehmen.		
Kurvenmessung)			
Manual Trace	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu		
(Manuelle	entnehmen.		
Kurvenmessung)			
HR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu		
	entnehmen.		
Volumen Flow	Einzelheiten zur D-Kurvenmethode (M) sind Abschnitt		
(Volumenfluss)	2.4.7 "Manuelle Kurvenmessung" zu entnehmen.		
	• Einzelheiten zur D-Kurvenmethode (A) sind Abschnitt 2.4.6		
	"Automatische Kurvenmessung" zu entnehmen.		

4 Geburtshilfemessungen und -berechnungen

Geburtshilfemessungen und -berechnungen sind im 2D-Modus (B/CFM/PDI/TDI), im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

4.1 Messungen im 2D-Modus

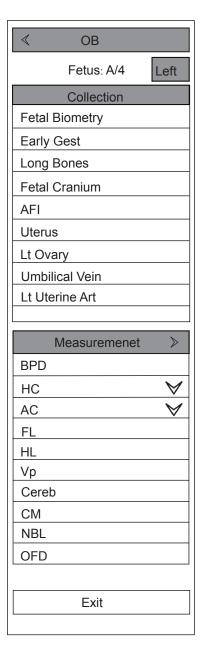


Abbildung 4-1 Geburtshilfemessungsmenü im 2D-Modus

4.1.1 Allgemeine Messungen

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **OB** (Geburtshilfe) im Messungsmenü klicken und eine Messkategorie auswählen, wie z. B. **Fetal Biometry** (Fötale Biometrie).
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode	
Fetal Biometry (Fötale	BPD	Einzelheiten sind Abschnitt 2.1.1.1	
Biometrie)		Zweipunktmessung zu entnehmen.	
	НС	Einzelheiten zur 2D-Kurvenmethode	
	AC	sind Abschnitt 2.1.2.1 Kurvenbereichsmessung zu entnehmen.	
		Einzelheiten zur 2D-Ellipsenmethode	
		sind Abschnitt 2.1.2.2	
		Ellipsenbereichsmessung zu entnehmen.	
	FL	Einzelheiten sind Abschnitt 2.1.1.1	
	HL	Zweipunktmessung zu entnehmen.	
	Vp		
	Cereb		
	СМ		
	NBL		
	OFD		
	APAD		
	TAD		
	TTD		
Early Gest	CRL	Einzelheiten sind Abschnitt 2.1.1.1	
		Zweipunktmessung zu entnehmen.	
	GS	Die 2D-Distanzmethode wird zur	
		Durchführung einer Distanzmessung verwendet.	
		Die dreifache 2D-Distanzmethode	
		wird zur Durchführung der dreifachen	
		Distanzmessung verwendet.	
		Einzelheiten zu Distanzmessungen sind	
		Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.	

Messerfassung	Messelement	Messmethode
Early Gest	BPD	Einzelheiten sind Abschnitt 2.1.1.1
	FL	Zweipunktmessung zu entnehmen.
	NT	Einzelheiten sind folgendem Abschnitt zu
	YS	entnehmen 2.1.1.1 Zweipunktmessung
Long Bones	HL	Einzelheiten sind Abschnitt 2.1.1.1
	RAD	Zweipunktmessung zu entnehmen.
	Ulna	
	TIB	
	FIB	
	Clav.	-
Fetal Cranium	Vp	Einzelheiten sind Abschnitt 2.1.1.1
	Cereb	Zweipunktmessung zu entnehmen.
	CM	Einzelheiten sind Abschnitt 2.1.1.1
	IOD	Zweipunktmessung zu entnehmen.
	OOD	Einzelheiten sind Abschnitt 2.1.1.1
	IT	Zweipunktmessung zu entnehmen.
	NT	Einzelheiten sind Abschnitt 2.1.1.1
	NF	Zweipunktmessung zu entnehmen.
	HEM	Einzelheiten sind Abschnitt 2.1.1.1
	c.s.p	Zweipunktmessung zu entnehmen.
	BOD	Einzelheiten sind Abschnitt 2.1.1.1
		Zweipunktmessung zu entnehmen.
AFI	Q1	Einzelheiten sind 4.1.5 AFI zu entnehmen.
	Q2	
	Q3	
	Q4	

Messerfassung	Messelement	Messmethode
Uterus	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1
	Height (Höhe)	Zweipunktmessung zu entnehmen.
	Width (Breite)	
	Endo.Thickn.	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.
	Cervix Length (Cervix-Länge)	 Einzelheiten zur 2D-Distanzmethode sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen. Einzelheiten zur 2D-Kurvenmethode sind Abschnitt 2.1.1.2 Längenkurvenmessung zu entnehmen.
Lt(Rt) Ovary	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1
	Height (Höhe)	Zweipunktmessung zu entnehmen.
	Width (Breite)	
Umbilical Vein (Nabelvene)	Diam	Einzelheiten sind Abschnitt 2.1.1.1
Lt(Rt) Uterine Art (Uterusarterie, links/rechts)	(Durchmesser)	Zweipunktmessung zu entnehmen.

4.1.2 Messung mehrerer Föten

Wenn Fetus (Fötus) auf der Registerkarte OB (Geburtshilfe) im Bildschirm New Patient (Neuer Patient) auf 2, 3 oder 4 eingestellt ist, können Sie Messungen und Berichte für die Entwicklung von mehreren Föten durchführen.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **OB** (Geburtshilfe) klicken, um das Menü für Geburtshilfemessungen anzuzeigen.
- 3. Auf **Fetus:** A/4 (Fötus: A/4) im Messungsmenü klicken, um den zu untersuchenden Fötus zu identifizieren, wie zum Beispiel B/4.
- 4. Die Messungen durchführen.
- 5. Bei Bedarf die Schritte 3-4 wiederholen, um die Messung für andere Föten zu wiederholen.

HINWEIS:

- Untersuchungen können höchstens für vier Föten gleichzeitig durchgeführt werden.
- Nach dem Wechsel zum nächsten Fötus (z. B. von B/4 zu A/4), werden alle durchgeführten Messungen aufgezeichnet und im Bericht zu diesem Fötus aufgeführt.
- Jegliche Messdaten im Zusammenhang mit mütterlichem Gewebe (wie Uterus, Eierstock-/Gebärmutterarterie usw.) werden aufgezeichnet und im Bericht aller Föten aufgeführt. Während Messdaten zu einem einzelnen Fötus (wie Fruchtwasserindex, Nabelschnur oder sonstige Organe) nur für diesen Fötus aufgezeichnet und im Bericht aufgeführt werden.
- Falls Sie über eine aktive Messung oder Berechnung verfügen, die beim Wechsel zu einem anderen Fötus nicht abgeschlossen ist, bricht das System die Messung oder Berechnung ab.

4.1.3 EFW

Für die Gewichtsschätzung des Fötus (EFW, Estimated Fetal Weight) werden die von Ihnen durchgeführten Geburtshilfe-Messungen herangezogen.

Für die EFW-Messung sind mehrere EFW-Formeln verfügbar. Über System Setting > Measure > Application > Fetal Weight (Systemeinstellung > Messung > Anwendung > Fötales Gewicht) können Sie die EFW-Methode auswählen und alle relevanten Messungen durchführen. Stellen Sie z. B. "Estimation" (Schätzung) auf BPD/AC/FL(Hadlock2) ein und führen Sie die Messungen von BPD, AC und FL durch, um den EFW-Wert zu erhalten.

Das System berechnet automatisch den EFW-Wert und zeigt diesen im Feld mit den Messergebnissen an, nachdem Sie alle erforderlichen Messungen abgeschlossen haben. Wenn Teile der Messungen zum zweiten Mal durchgeführt werden, berechnet das System automatisch entsprechend der neuen Messungen den EFW-Wert.

4.1.4 GA und EDD

Befolgen Sie die folgenden Methoden, um den geschätzten Entbindungstermin (Expected Date of Deliver, EDD) und das Gestationsalter (Gestational Age, GA) zu berechnen. Die berechneten GA- und EDD-Werte können geringfügig abweichen. Sie sollten daher eine Diagnose mit einer klinischen Analyse durchführen.

• Berechnet ab letztem Menstruationszyklus (Last Menstrual Period, LMP)

Wenn das Datum auf dem Bildschirm **New Patient** (Neuer Patient) auf der Registerkarte **OB** (Geburtshilfe) auf **LMP** gesetzt wurde, berechnet das System automatisch EDD und GA und zeigt die Ergebnisse im Messbericht an. Die Formel wird unten angezeigt.

GA = aktuelles Datum - LMP

EDD = LMP + 280 Tage

• Berechnet ab dem Zeitpunkt der Empfängnis (DOC)

Wenn das **Datum** auf dem Bildschirm **New Patient** (Neuer Patient) auf der Registerkarte **OB** (Geburtshilfe) auf **DOC** gesetzt wurde, berechnet das System automatisch EDD und GA und zeigt die Ergebnisse im Messbericht an. Die Formel wird unten angezeigt.

GA = aktuelles Datum - DOC + 14 Tage

EDD = DOC + 266 Tage

- Zur Berechnung nach Messergebnissen
 - Über System Setting > Measure > Application > CUA (Systemeinstellung > Messung > Anwendung > CUA) können Sie die CUA-Methode auswählen und alle relevanten Messungen durchführen. Wenn CUA beispielsweise auf BPD, AC eingestellt ist, sollten Sie die BPD- und AC-Messungen durchführen, um den CUA-Wert zu erhalten.

Das System berechnet automatisch CUA (Composite Ultrasound Age) und EDD und zeigt die Ergebnisseim Messbericht an, nachdem Sie alle erforderlichen Messungen durchgeführt haben.

Über System Setting > Measure > Application > New Table (Systemeinstellung > Messung > Anwendung > Neue Tabelle) können Sie für jede Methode die jeweilige Formel auswählen und alle relevanten Messungen durchführen.

Das System berechnet automatisch die GA- und EDD-Werte und berechnet mithilfe der berechneten GA- und EDD-Werte den durchschnittlichen CUA- und EDD-Wert und zeigt die Ergebnisse im Messbericht an, nachdem Sie die erforderlichen Messungen durchgeführt haben.

Berechnet nach EFW

Über **System Setting** > **Measure** > **Application** > **Age by EFW** (Systemeinstellung > Messung > Anwendung > Alter nach EFW) können Sie die Methode auswählen und alle relevanten Messungen durchführen.

Das System berechnet automatisch das EFW, um mithilfe des EFW-Werts das GA und EDD zu berechnen und zeigt die Ergebnisse dann im Messbericht an, nachdem Sie alle erforderlichen Messungen durchgeführt haben.

Die zuvor berechneten GA- und EDD-Werte können geringfügig abweichen. Sie sollten daher eine Diagnose mit einer klinischen Analyse durchführen.

4.1.5 AFI

Für den Fruchtwasserindex (Amniotic Fluid Index, AFI) sind vier Messungen erforderlich, um das tiefste Fruchtwasserdepot in den vier Quadranten der Gebärmutterhöhle zu berechnen. Dieser wird von der vertikalen Linie in der Mitte des Abdomens und der horizontalen Linie der Nabelschnur unterteilt. Das System summiert diese vier Messungen, um das AFI zu berechnen.

Die Berechnung des AFI erfolgt anhand der folgenden Formel:

$$AFI = \sum_{i=1}^{4} AFI_{Di}$$

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **OB** -> **AFI** (Geburtshilfe -> AFI) im Messungsmenü klicken. Eine Markierung erscheint dann auf dem Bildschirm.
- Eine Distanzmessung zum ersten Quadranten durchführen. Es wird dann die zweite Markierung auf dem Bildschirm angezeigt und der AFI-Wert wird in dem Feld mit den Messergebnissen angezeigt.
- 4. Erneut scannen, um das Bild im zweiten Quadranten zu erhalten und eine Distanzmessung zum zweiten Quadranten durchführen.
- 5. Schritt 3-4 wiederholen, um die Distanzmessungen zum dritten und vierten Quadranten durchzuführen. Der finale AFI-Wert wird angezeigt.

Es können auch vier Distanzmessungen zu vier Quadranten gleichzeitig im Vierfachanzeigemodus durchgeführt werden.

4.2 M-Modus-Messungen

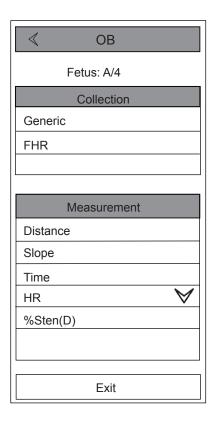


Abbildung 4-2 Geburtshilfemessungsmenü im M-Modus

- 1. Die Taste **Calc** (Berechnen) auf dem Bedienfeld im M-Modus drücken und auf **OB** (Geburtshilfe) im Messungsmenü klicken.
- 2. Eine Messerfassung und anschließend ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode	
Generisch	Distanz	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.	
	Slope (Neigung)	Einzelheiten sind Abschnitt 2.2.2 Neigungsmessung zu entnehmen.	
	Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.	
	HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.	
	%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose-Distanzmessung zu entnehmen.	

Messerfassung	Messelement	Messmethode
FHR	FHR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu
	Atrial FHR	entnehmen.

4.3 Messungen im Spektral-Doppler-Modus

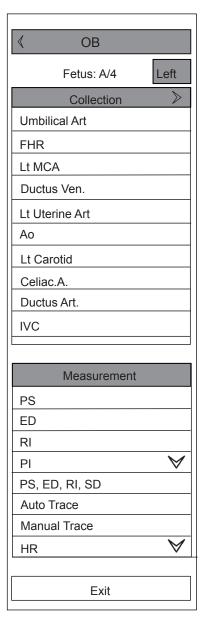


Abbildung 4-3 Geburtshilfemessungsmenü im Spektral-Doppler-Modus

- Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken und auf OB (Geburtshilfe) im Messungsmenü klicken.
- 2. Eine Messerfassung wie **Umbilical Art** auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
FHR	FHR	Einzelheiten sind Abschnitt 2.4.8
		Zeitmessung zu entnehmen.
Lt(Rt) MCA	PS	Einzelheiten sind Abschnitt 2.4.1
Lt(Rt) Uterine Art	ED	Geschwindigkeitsmessung zu entnehmen.
(Uterusarterie, links/	RI	Einzelheiten sind Abschnitt 2.4.1
rechts)		Geschwindigkeitsmessung zu entnehmen.
Ao	PI	Einzelheiten sind Abschnitt 2.4.4
Lt(Rt) Carotid		Pulsatilitätsindexmessung zu entnehmen.
Celiac.A.	PS,ED,RI,SD	Einzelheiten sind Abschnitt 2.4.3
Ductus Art		Widerstandsindexmessung zu entnehmen.
Umbilical Art.	Auto Trace (Automatische	Einzelheiten sind Abschnitt 2.4.6
SMA	Kurvenmessung)	Automatische Kurvenmessung zu
Lt(Rt) UmA		entnehmen.
	Manual Trace (Manuelle	Einzelheiten sind Abschnitt 2.4.7
	Kurvenmessung)	Manuelle Kurvenmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.4.9
		Herzfrequenzmessung zu entnehmen.
Lt(Rt) Uterine Art	Volumen Flow	Einzelheiten zur D-Kurvenmethode
(Uterusarterie, links/	(Volumenfluss)	(M) sind Abschnitt 2.4.7 Manuelle
rechts)		Kurvenmessung zu entnehmen.
		Einzelheiten zur D-Kurvenmethode
		(A) sind Abschnitt 2.4.6 Automatische
		Kurvenmessungzu entnehmen.

Messerfassung	Messelement	Messmethode
Ductus Ven.	S (Ventricular Systole Peak Velocity)	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	D (Ventricular Diastole Peak Velocity)	
	a (Lowest Velocity during Atrial Systole, Geringste Geschwindigkeit während der Vorhofsystole)	
	PVIV (Peak Velocity Index Vein)	Einzelheiten sind Abschnitt 2.4.5 S/D-Verhältnismessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.
IVC	S (Ventricular Systole Peak Velocity)	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	D (Ventricular Diastole Peak Velocity)	
	S.a. PLI (Preload Index)	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
	PVIV (Peak Velocity Index Vein)	Einzelheiten sind Abschnitt 2.4.5 S/D-Verhältnismessung zu entnehmen.
Umbilical Vein (Nabelvene)	TAmax (Time Averaged Maximum Velocity)	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	Volumen Flow (Volumenfluss)	 Einzelheiten zur D-Kurvenmethode (M) sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Einzelheiten zur D-Kurvenmethode (A) sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.

5 Gynäkologische Messungen und Berechnungen

Gynäkologische Messungen und Berechnungen sind im 2D-Modus (B/CFM/PDI/TDI), im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

5.1 Messungen im 2D-Modus

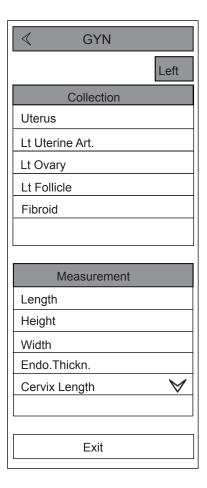


Abbildung 5-1 Gynäkologisches Messungsmenü im 2D-Modus

5.1.1 Uterusmessung

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **GYN** -> **Uterus** (Gynäkologie -> Gebärmutter) im Messungsmenü klicken.
- 3. Ein Messelement wie **Length** (Länge) auswählen, um die Messung zu starten.

Messelement	Messmethode
Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu
Height (Höhe)	entnehmen.
Width (Breite)	
Endo.Thickn.	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.

Messelement	Messmethode	
Cervix Length	Einzelheiten zu 2D-Distanzmessmethoden sind 2.1.1.1	
(Cervix-Länge)	Zweipunktmessung zu entnehmen.	
	Einzelheiten zur 2D-Kurvenmethode sind Abschnitt 2.1.1.2	
	Längenkurvenmessung zu entnehmen.	

5.1.2 Uterusarterienmessung

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **GYN** -> Lt Uterine A (Gynäkologie -> Uterusarterie, links) im Messungsmenü klicken.
- 3. **Diam** (Durchmesser) auswählen, um die Messung zu starten.

Messelement	Messmethode	
Diam (Durchmesser)	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.	

5.1.3 Ovar-Volumenmessung

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **GYN** -> **Lt Ovary** (Gynäkologie -> Eierstöcke, links) im Messungsmenü klicken.
- 3. Drei Distanzmessungen für die Länge, Höhe und Breite durchführen und das Volumen automatisch vom System berechnen lassen.

5.1.4 Follikelmessung

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **GYN** -> Lt **Follicle** (Gynäkologie -> Follikel, links) im Messungsmenü klicken.
- 3. Auf Follicle (Follikel) klicken und die Messmethode einstellen, wie z.B. **2D-Dist** (2D-Distanzmessung), **2D-Dbl. Dist** (Distanz), **2D-Triple Dist** (Dreifache 2D-Distanzmessung) und **2D-Ellipse+Dist** (2D-Ellipse+Distanz).
- 4. Die Messung durchführen und den durchschnittlichen Wert und das durchschnittliche Volumen automatisch vom System berechnen lassen.
 - Bei der Methode **2D-Dist** (2D-Distanzmessung) eine Distanzmessung durchführen.
 - Bei der Methode **2D-Double Dist** (Doppelte 2D-Distanzmessung) zwei Distanzmessungen durchführen.

- Bei der Methode 2D-Triple Dist (Dreifache 2D-Distanzmessung) drei Distanzmessungen durchführen.
- Bei der Methode 2D-Ellipse+Dist (2D-Ellipse+Distanz) eine Ellipse+Distanzmessung durchführen.

5.1.5 Fibroidmessung

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **GYN** -> **Fibroid** (Gynäkologie -> Fibroid) im Messungsmenü klicken.
- Auf Fibroid klicken und die Messmethode einstellen, wie z. B. 2D-Dist. (2D-Distanzmessung), 2D-Dbl. Dist (Doppelte 2D-Distanzmessung) und 2D-Triple Dist (Dreifache 2D-Distanzmessung).
- 4. Die Messung durchführen und den durchschnittlichen Wert und das durchschnittliche Volumen automatisch vom System berechnen lassen.
 - Bei der Methode **2D-Dist** (2D-Distanzmessung) eine Distanzmessung durchführen.
 - Bei der Methode 2D-Double Dist (Doppelte 2D-Distanzmessung) zwei Distanzmessungen durchführen.
 - Bei der Methode **2D-Triple Dist** (Dreifache 2D-Distanzmessung) drei Distanzmessungen durchführen.

5.2 M-Modus-Messungen

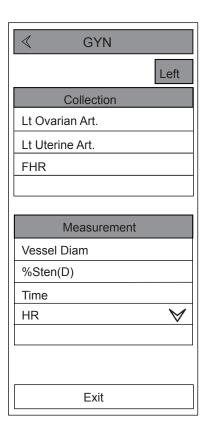


Abbildung 5-2 Gynäkologisches Messungsmenü im M-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf **GYN** -> **Lt Ovarian Art.** (Gynäkologie -> Eierstockarterie, links) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Ovarian Art. (Eierstockarterie,	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
links/rechts) Lt(Rt) Uterine Art. (Uterusarterie, links/rechts)	%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose-Distanzmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.
FHR	FHR	Einzelheiten sind Abschnitt 2.2.6
	Atrial FHR	Herzfrequenzmessung zu entnehmen.

5.3 Messungen im Spektral-Doppler-Modus

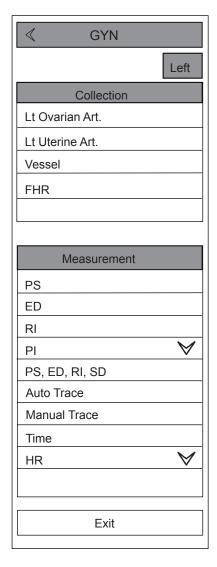


Abbildung 5-3 Gynäkologisches Messungsmenü im Spektral-Doppler-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- Auf GYN -> Lt Ovarian Art. (Gynäkologie -> Eierstockarterie, links) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Ovarian Art. (Eierstockarterie, links/	PS ED	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
rechts) Lt(Rt) Uterine Art. (Uterusarterie, links/	RI	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
rechts) Gefäß	PI	Einzelheiten zur D-Kurvenmethode (M) sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Einzelheiten zur D-Kurvenmethode (A) sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
	PS,ED,RI,SD	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
	Auto Trace (Automatische Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
	Manual Trace (Manuelle Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.
Lt(Rt) Uterine Art. (Uterusarterie, links/rechts)	Volumen Flow (Volumenfluss)	Einzelheiten zur D-Kurvenmethode (M) sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Einzelheiten zur D-Kurvenmethode (A) sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
FHR	FHR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.

Diese Seite ist absichtlich leer.

Abdominale Messungen und Berechnungen

Abdominale Messungen und Berechnungen sind im 2D-Modus (B/CFM/PDI/TDI), im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

6.1 Messungen im 2D-Modus

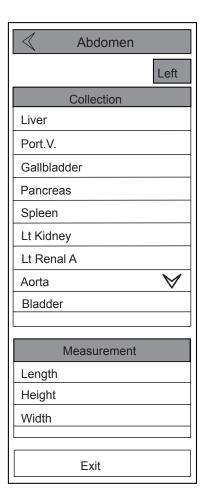


Abbildung 6-1 Abdominales Messungsmenü im 2D-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **Abdomen** im Messungsmenü klicken und eine Messerfassung wie **Liver** (Leber) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Leber Blase	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1
	Height (Höhe)	Zweipunktmessung zu entnehmen.
	Width (Breite)	

Messerfassung	Messelement	Messmethode	
Port.V.	Portal V.Diam. (Portal	Einzelheiten sind folgendem	
	VDurchmesser)	Abschnitt zu entnehmen 2.1.1.1	
	Flow Diam (Flow-	Zweipunktmessung	
	Durchmesser)		
Gallenblase	Length (Länge)	Einzelheiten sind folgendem	
	Width (Breite)	Abschnitt zu entnehmen 2.1.1.1 Zweipunktmessung	
	Wall (Wand)	Zworpankanessang	
	CBD		
Brauchspeicheldrüse	Duct.	Einzelheiten sind Abschnitt 2.1.1.1	
	Head (Kopf)	Zweipunktmessung zu entnehmen.	
	Body (Körper)		
	Tail (Schwanz)		
Milz	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.	
	Height (Höhe)		
	Width (Breite)		
Lt(Rt) Kidney (Niere,	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1	
links (rechts))	Height (Höhe)	Zweipunktmessung zu entnehmen.	
	Width (Breite)		
Lt(Rt) Renal A Aorta	Vessel Area	Einzelheiten sind Abschnitt 2.1.1.1	
	(Gefäßbereich)	Zweipunktmessung zu entnehmen.	
	%Sten(A)	Einzelheiten sind Abschnitt 2.1.2.2 %Stenosis Area (%Stenosen-Bereich)	
		zu entnehmen.	
	Vessel Diam.	Einzelheiten sind Abschnitt 2.1.1.1	
	(Gefäßdurchmesser)	Zweipunktmessung zu entnehmen.	
	%Sten(D)	Einzelheiten sind Abschnitt 2.1.1.4 %Stenose-Distanz zu entnehmen.	
	Flow Diam (Flow-	Einzelheiten sind Abschnitt 2.1.1.1	
	Durchmesser)	Zweipunktmessung zu entnehmen.	

6.2 M-Modus-Messungen

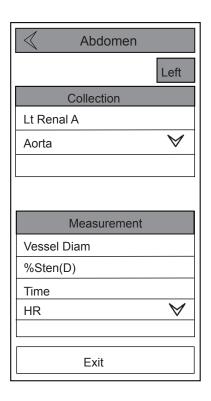
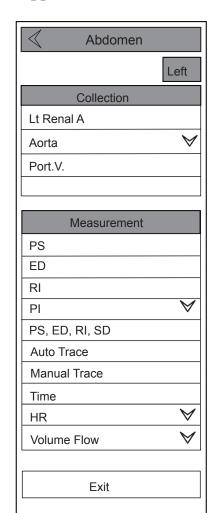



Abbildung 6-2 Abdominales Messungsmenü im M-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- Auf Abdomen im Messungsmenü klicken und eine Messerfassung wie Lt Renal A (Niere A, links) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Renal A Aorta	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
	%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose-Distanzmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.

6.3 Messungen im Spektral-Doppler-Modus

Abbildung 6-3 Abdominales Messungsmenü im Spektral-Doppler-Modus

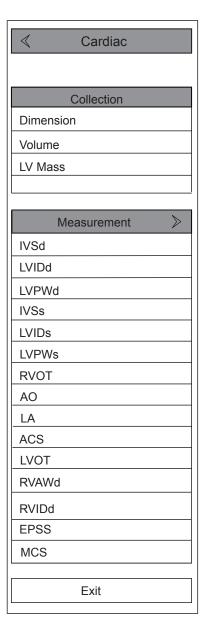
- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf **Abdomen** im Messungsmenü klicken und eine Messerfassung wie **Lt Renal A** (Niere A, links) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

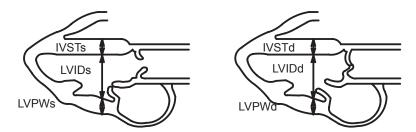
Messerfassung	Messelement	Messmethode
Lt(Rt) Renal A Aorta	PS ED	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	RI	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
	PI	Einzelheiten sind Abschnitt 2.4.4 Pulsatilitätsindexmessung zu entnehmen.
	PS,ED,RI,SD	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
	Auto Trace (Automatische Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
	Manual Trace (Manuelle Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.
	Volumen Flow (Volumenfluss)	 Einzelheiten zur D-Kurvenmethode (M) sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Einzelheiten zur D-Kurvenmethode (A) sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
Port.V.	Vel.	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.

7 Kardiologische Messungen und Berechnungen

Kardiologische Messungen und Berechnungen sind im B-Modus, im Farbflussmodus, im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

7.1 Messungen im B-Modus




Abbildung 7-1 Kardiologisches Messungsmenü im B-Modus

7.1.1 Linker Ventrikel

Der linke Ventrikel kann mithilfe folgender Methoden im B-Modus beurteilt werden.

- Teichholz
- Simpson
- Fläche-Länge (Area-Length, A-L)

7.1.1.1 Teichholz

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac (Herz) im Messungsmenü klicken.
- 3. Auf **Dimensions** (Abmessungen) -> **IVSd** oder auf **Volume** (Volumen) und ein Messelement unter **Teichholz** (**LV**) klicken, um die Messungen zu starten.

Messelement	Beschreibung	Messmethode
IVSd	Diastolische interventrikuläre Septumdicke	Einzelheiten sind Abschnitt 2.1.1.1
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch	Zweipunktmessung zu entnehmen.
LVPWd	Diastolische linksventrikuläre Hinterwanddicke	
IVSs	Systolische interventrikuläre Septumdicke	
LVIDs	Linksventrikulärer Innendurchmesser, endsystolisch	
LVPWs	Systolische linksventrikuläre Hinterwanddicke	

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
EDV	Linksventrikuläres enddiastolisches Volumen (ml)	$EDV = \frac{7 \times LVIDd^3}{2.4 + LVIDd}$
ESV	Linksventrikuläres endsystolisches Volumen (ml)	$ESV = \frac{7 \times LVIDs^3}{2.4 + LVIDs}$
SV	Schlagvolumen (ml)	SV = EDV-ESV
FS	Verkürzungsfraktion	FS=(LVIDd-LVIDs)/LVIDd

Berechnungselement	Beschreibung	Formel
СО	Herzzeitvolumen (l/min)	CO = SV×HR
CI	Herzindex	CI = CO/BSA
EF	Ejektionsfraktion	EF = SV/EDV
SI	Schlagindex	SI = SV/BSA
IVS%	Interventrikuläre Septumdicke in %	IVS%=(IVSs-IVSd)/IVSd
LVPW%	Linksventrikuläre LVPW%=(LVPWs-	
	Hinterwanddicke in % LVPWd)/LVPWd	
IVS/LVPW	Interventrikuläre Septum-/	
	Linksventrikuläre IVS/LVPW=IVSd/LV	
	Hinterwanddicke	

7.1.1.2 Simpson-Methode

Bei dieser Messmethode wird das LV-Volumen anhand des orthogonal zueinander liegenden apikalen Vier- und Zweikammerblicks berechnet.

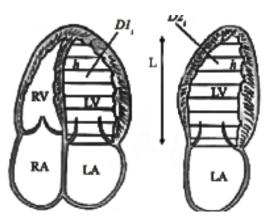


Abbildung 7-2 Vier- und Zweikammerblick

- L: die längere der beiden langen LV-Achsen im Vier- und Zweikammerblick.
- D1i: Der Durchmesser der i-th-Platte des Vierkammerblicks.
- D2i: der Durchmesser der I-th-Platte des Zweikammerblicks.
- n: die Gesamtanzahl der Platten.
- h: die Höhe der I-th-Platte.

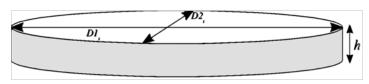


Abbildung 7-3 I-th-Platte

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Volume (Herz -> Volumen) im Messungsmenü klicken.
- 3. Ein Messelement unter **Simp** (LV) auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
A2Cd	Enddiastole im Zweikammerblick	Mit dem Trackball den Umfang des
A2Cs	Endsystole im Zweikammerblick	Endokards verfolgen. Mithilfe der Taste Update (Aktualisieren) auf dem
A4Cd	Enddiastole im Vierkammerblick	Bedienfeld kann die Kurve rückgängig
A4Cs	Endsystole im Vierkammerblick	gemacht und mit dem Trackball erneut gezeichnet werden.
		2. Zum Bestätigen die Bestätigungstaste drücken. Das System zeigt automatisch die Längsachse an. Diese können Sie mit dem Trackball einstellen.
		3. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Nach Abschluss der Messungen A2Cd, A2Cs, A4Cd und A4Cs berechnet das System anhand der Messergebnisse automatisch die folgenden Elemente.

Wenn Sie die Messungen nur teilweise abschließen, werden nur die abgeschlossenen Elemente berechnet.

Berechnungselement	Beschreibung	Formel
EDV (A4C)	Linksventrikuläres	$EDV(A4C) = (\pi/4) \times h \times \sum (A4Cd \times A4Cd)$
EDV (A2C)	enddiastolisches Volumen (ml)	$EDV(A2C) = (\pi/4) \times h \times \sum (A2Cd \times A2Cd)$
EDV (BP)		$EDV(BP) = (\pi/4) \times h \times \sum (A4Cd \times A2Cd)$
ESV (A4C)	Linksventrikuläres	$ESV(A4C) = (\pi/4) \times h \times \sum (A4Cs \times A4Cs)$
ESV (A2C)	endsystolisches Volumen (ml)	$ESV(A2C) = (\pi/4) \times h \times \sum (A2Cs \times A2Cs)$
ESV (BP)		$ESV(BP) = (\pi/4) \times h \times \sum (A4Cs \times A2Cs)$

Berechnungselement	Beschreibung	Formel
CO (A4C)	Herzzeitvolumen (l/min)	$CO(A4C) = SV(A4C) \times HR$
CO (A2C)		$CO(A2C) = SV(A2C) \times HR$
CO (BP)		$CO(BP) = SV(BP) \times HR$
EF (A4C)	Ejektionsfraktion	EF(A4C) = SV(A4C)/EDV(A4C)
EF (A2C)		EF(A2C) = SV(A2C)/EDV(A2C)
EF (BP)		EF(BP) = SV(BP)/EDV(BP)
SI (A4C)	Schlagvolumenindex	SI(A4C) = SV(A4C)/BSA
SI (A2C)		SI(A2C) = SV(A2C)/BSA
SI (BP)		SI(BP) = SV(BP)/BSA
CI (A4C)	Herzindex	CI(A4C) = CO(A4C)/BSA
CI (A2C)		CI(A2C) = CO(A2C)/BSA
CI (BP)		CI(BP) = CO(BP)/BSA

7.1.1.3 Flächen/Längen-Methode

Bei dieser Messmethode wird das LV-Volumen berechnet, indem die Ellipse, die sich über der Längsachse des linken Ventrikels erstreckt, gemessen wird.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Volume (Herz -> Volumen) im Messungsmenü klicken.
- 3. Ein Messelement unter A-L(LV) auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
LVd	Linksventrikulärer Durchmesser an der Enddiastole	Mit dem Trackball den Umfang des linken Ventrikels verfolgen. Sie können die Taste Update auf dem Bedienfeld drücken, um den Anker zu modifizieren.
LVs	Linksventrikulärer Durchmesser an der Endsystole	 Zur Bestätigung auf die Bestätigungstaste auf dem Bedienfeld drücken. Das System zeigt automatisch die Längsachse an. Diese können Sie mit dem Trackball einstellen. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
EDV	Linksventrikuläres enddiastolisches Volumen (ml)	$EDV=(8/3)\times(LVd-Fläche^2/(LVd-Länge\times\pi))$
ESV	Linksventrikuläres endsystolisches Volumen (ml)	$ESV=(8/3)\times(LVs-Fläche^2/(LVs-Länge\times\pi))$
SV	Schlagvolumen (ml)	SV = EDV-ESV
СО	Herzzeitvolumen (l/min)	CO = SV×HR
EF	Ejektionsfraktion	EF = SV/EDV
SI	Schlagvolumenindex	SI = SV/BSA
CI	Herzindex	CI = CO/BSA

7.1.2 Volumen des linken Vorhofs

Das Volumen des linken Vorhofs kann mithilfe der Simpson-Methode gemessen werden, bei der der apikale Vierkammerblick und der dazu orthogonal verlaufende apikale Zweikammerblick zum Einsatz kommen.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Volume (Herz -> Volumen) im Messungsmenü klicken.
- 3. Ein Messelement unter **Simp** (LA) auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
A2Cs	Endsystole im Zweikammerblick	Mit dem Trackball den Umfang des Endokards verfolgen. Sie können die Taste Update (Aktualisieren)
A4Cs	Endsystole im Vierkammerblick	 auf dem Bedienfeld drücken, um den Anker zu modifizieren. 2. Zum Bestätigen die Bestätigungstaste drücken. Das System zeigt automatisch die Längsachse an. Diese können Sie mit dem Trackball einstellen. 3. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Nach Abschluss der Messungen A2Cs und A4Cs berechnet das System anhand der Messergebnisse automatisch die folgenden Elemente.

Wenn Sie die Messungen nur teilweise abschließen, werden nur die abgeschlossenen Elemente berechnet.

Berechnungselement	Beschreibung	Formel
LA ESV (A4C)	Endsystolisches	LA ESV(A4C)= $(\pi/4)\times h\times \sum (A4Cs\times A4Cs)$
LA ESV (A2C)	Volumen des linken Vorhofs (ml)	LA ESV(A2C)= $(\pi/4)\times h\times \sum (A2Cs\times A2Cs)$
LA ESV (BP)	voinois (iiii)	$LA ESV(BP) = (\pi/4) \times h \times \sum (A4Cs \times A2Cs)$

7.1.3 Volumen des rechten Vorhofs

Das Volumen des rechten Vorhofs kann mithilfe der Simpson-Methode gemessen werden, d. h. über den apikalen Vierkammerblick.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Volume (Herz -> Volumen) im Messungsmenü klicken.
- 3. **A4Cs** unter **Simp(RA)** auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
A4Cs	Endsystole im Vierkammerblick	 Mit dem Trackball den Umfang des Endokards verfolgen. Sie können die Taste Update (Aktualisieren) auf dem Bedienfeld drücken, um den Anker zu modifizieren. Zum Bestätigen die Bestätigungstaste drücken. Das System zeigt automatisch die Längsachse an. Diese können Sie mit dem Trackball einstellen. Die Bestätigungstaste drücken, um die Messung abzuschließen.

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel	
RA ESV (A4C)	Endsystolisches Volumen des rechten Vorhofs (ml)	RA ESV(A4C)= $(\pi/4)\times h\times \sum (A4Cs\times A4Cs)$	

7.1.4 Rechter Ventrikel

Die Messungen der rechtsventrikulären enddiastolischen Vorderwanddicke (RVAWd) und des rechtsventrikulären endsystolischen Innendurchmessers (RVIDd) sind im B-Modus verfügbar.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. **RVAWd** oder **RVIDd** auswählen, um eine Distanzmessung durchzuführen.

7.1.5 Durchmesser des linken Vorhofs/Aortenwurzel-Durchmesser

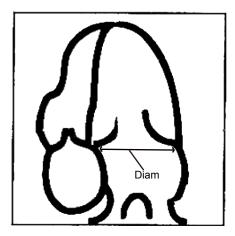
Die LA- und AO-Messungen sowie ihr Verhältnis sind im B-Modus verfügbar.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. **AO** oder **LA** auswählen, um eine Distanzmessung durchzuführen.

Das System berechnet automatisch deren Verhältnis, nachdem Sie die AO- und LA-Messungen durchgeführt haben.

7.1.6 Durchmesser des links-/rechtsventrikulären Ausflusstrakts


Die LVOT- und RVOT-Messungen sind im B-Modus verfügbar.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf **LVOT** oder **RVOT** klicken, um eine Distanzmessung durchzuführen.

7.1.7 Durchmesser der Mitralklappe

Die Messungen des Mitralklappendurchmessers, der Mitralklappen-Separation, der E-Punkt-Septum-Distanz und der Mitralklappenöffnungsfläche sind alle im B-Modus verfügbar. Der Durchmesser der Mitralklappe kann mithilfe der folgenden Abbildung gemessen werden.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf **MV Diam** (MV-Durchmesser), **MCS**, **EPSS** oder **MVA** klicken, um die Messung zu starten.

Messelement	Beschreibung	Messmethode	
MV Diam (MV- Durchmesser)	Durchmesser der Mitralklappe		
MCS	Mitralklappen-Separation	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.	
EPSS	Distanz zwischen Punkt E und dem interventrikulären Septum	2 Eweipunktnessung zu entnemnen.	
MVA	Mitralklappenöffnungsfläche	Einzelheiten sind folgendem Abschnitt zu entnehmen 2.1.2.1 Kurvenbereichsmessung	

7.1.8 Aortenklappe

Die Messungen der Aortenklappen-Separation und Aortenklappenöffnungsfläche sind im B-Modus verfügbar.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf ACS oder AVA klicken, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
ACS	Aortenklappen-Separation	Einzelheiten sind Abschnitt 2.1.1.1
		Zweipunktmessung zu entnehmen.
AVA	Aortenklappenöffnungsfläche	Einzelheiten sind folgendem
		Abschnitt zu entnehmen 2.1.2.1
		Kurvenbereichsmessung

7.1.9 Durchmesser der Hauptpulmonalarterie

Die Messung des Durchmessers der Hauptpulmonalarterie (MPA) ist im B-Modus verfügbar.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf MPA klicken, um eine Distanzmessung durchzuführen.

7.1.10 Durchmesser der Trikuspidalklappe

Die Messung des Durchmessers der Trikuspidalklappe (TV Diam) ist im B-Modus verfügbar.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf **TV Diam** (TV-Durchmesser) klicken, um die Distanzmessung durchzuführen.

7.1.11 Durchmesser der Pulmonalklappe

 $Die\ Messung\ des\ Durchmessers\ der\ Pulmonalklappe\ (PV\ Diam)\ ist\ im\ B-Modus\ verfügbar.$

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> Dimensions (Herz -> Abmessungen) im Messungsmenü klicken.
- 3. Auf **PV Diam** (PV-Durchmesser) klicken, um eine Distanzmessung durchzuführen.

7.1.12 Linksventrikuläre Masse

Die linksventrikuläre Masse kann mithilfe folgender Methoden im B-Modus beurteilt werden.

- Cube
- Fläche-Länge (Area-Length, A-L)
- Truncated Ellipsoid (T-E)

7.1.12.1 Cube

Diese Messmethode berechnet die LV-Masse durch Messung von IVSd, LVIDd und LVPWd.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> LV Mass (Herz -> LV-Masse) im Messungsmenü klicken.
- 3. Ein Messelement unter **LVM(Cube)** auswählen, um die Messungen nacheinander auszuführen.

Messelement	Beschreibung	Messmethode
IVSd	Diastolische interventrikuläre Septumdicke	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch	
LVPWd	Diastolische linksventrikuläre Hinterwanddicke	

Das System berechnet automatisch die LV-Masse mithilfe folgender Formel und zeigt das Ergebnis im Feld mit den Messergebnissen an.

LVM=0.8×1.04×[(IVSd+LVIDd+LVPWd)3-LVIDd3]+0.6

7.1.12.2 Flächen-Längen-Methode

Diese Messmethode berechnet die LV-Masse durch Messung von LVAd Sa Ep, LVAd Sa En und LVLd Apical.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> LV Mass (Herz -> LV-Masse) im Messungsmenü klicken.
- 3. Ein Messelement unter LVM(A-L) auswählen, um die Messungen nacheinander auszuführen.

Messelement	Beschreibung	Messmethode
LVAd Sa Ep	Linksventrikulärer Epikard-	Einzelheiten sind Abschnitt 2.1.2.1
	Bereich auf Papillarmuskelebene	Kurvenbereichsmessung zu
	an der Enddiastole in	entnehmen.
	Kurzachsenansicht	
LVAd Sa En	Linksventrikulärer	
	Endokardialbereich auf	
	Papillarmuskelebene an	
	Enddiastole in Kurzachsenansicht	
LVLd Apical	Länge der linksventrikulären	Einzelheiten sind Abschnitt 2.1.1.1
	Längsachse an Enddiastole in Apikalansicht	Zweipunktmessung zu entnehmen.

Das System berechnet automatisch die LV-Masse mithilfe folgender Formel und zeigt das Ergebnis im Feld mit den Messergebnissen an.

LVM=1,05×[(5/6)× A_1 ×(LVLd Apical+t)-(5/6)× A_2 ×(LVLd Apical)]

- A₁=LVAd Sa Ep
- A₂=LVAd Sa En
- $t=(A1/\pi)^{1/2}-(A2/\pi)^{1/2}$

7.1.12.3 Truncated-Ellipsoid-Methode

Diese Messmethode berechnet die LV-Masse durch Messung von LVAd Sa Ep, LVAd Sa En, a und d.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im B-Modus drücken.
- 2. Auf Cardiac -> LV Mass (Herz -> LV-Masse) im Messungsmenü klicken.
- 3. Ein Messelement unter LVM(T-E) auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
LVAd Sa Ep	Linksventrikulärer Epikard-Bereich auf Papillarmuskelebene an der Enddiastole in Kurzachsenansicht	Einzelheiten sind Abschnitt 2.1.2.1 Kurvenbereichsmessung zu entnehmen.
LVAd Sa En	Linksventrikulärer Endokardialbereich auf Papillarmuskelebene an Enddiastole in Kurzachsenansicht	

Messelement	Beschreibung	Messmethode
a	Große Halbachse vom größten Nebenachsenradius zum Apex	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu
	Treoditional and Treodi	entnehmen.
d	Gekürzte große Halbachse vom größten Nebenachsenradius zur Mitralringebene	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.

Das System berechnet automatisch die LV-Masse mithilfe folgender Formel und zeigt das Ergebnis im Feld mit den Messergebnissen an.

 $LVM{=}1,05{\times}[(b{+}t)^2{\times}[(2/3)\times(a{+}t){+}d{-}d^3/3(a{+}t)^2]{-}b^2[(2/3)\times a{+}d{-}d^3/3a^2]$

- A₁=LVAd Sa Ep
- A₂=LVAd Sa En
- $b=(A_2/\pi)^{1/2}$
- $t=(A_1/\pi)^{1/2}-b$

7.2 Messungen im Farbflussmodus

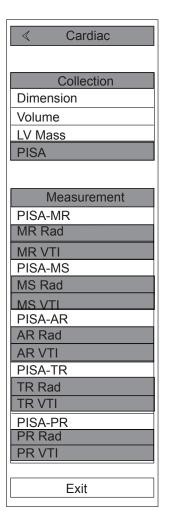


Abbildung 7-4 Kardiologisches Messungsmenü im Farbflussmodus

In diesem Abschnitt werden ausschließlich die Messungen des PISA-Radius an der Mitralklappe, Trikuspidalklappe, Aortenklappe und Pulmonalklappe beschrieben. Andere Messungen im Farbflussmodus können wie diejenigen im B-Modus durchgeführt werden. Einzelheiten sind Abschnitt 7.1 Messungen im B-Modus zu entnehmen.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im Farbflussmodus drücken.
- 2. Auf Cardiac -> PISA (Herz -> PISA) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
MR Rad	Radius der Mitralklappenstenose	Einzelheiten sind Abschnitt 2.1.1.1
AR Rad	Radius der Aortenklappenstenose	Zweipunktmessung zu entnehmen.
TR Rad	Radius der Trikuspidalklappenstenose	
MS Rad	Radius der Mitralklappenstenose	
PR Rad	Radius der Pulmonalklappenstenose	

HINWEIS:

Um PISA-Ergebnisse zu erzielen, sollten Sie Messungen für den PISA-Radius an der Mitralklappe, Trikuspidalklappe, Aortenklappe und Pulmonalklappe im Farbflussmodus durchführen und dann für das Geschwindigkeits-Zeit-Integral der Regurgitation an der Mitralklappe, Trikuspidalklappe, Aortenklappe und Pulmonalklappe im Spektral-Doppler-Modus durchführen.

7.3 M-Modus-Messungen

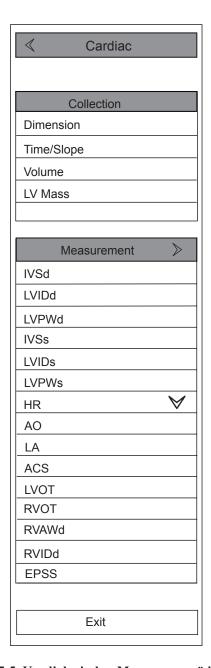
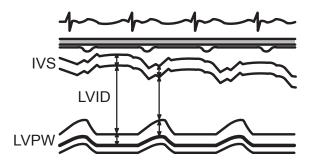


Abbildung 7-5 Kardiologisches Messungsmenü im M-Modus

In diesem Abschnitt werden ausschließlich die Messungen der linksventrikulären Evaluierung, der linksventrikulären Masse und des links-/rechtsventrikulären TEI-Index beschrieben. Andere Messungen können, wie in der folgenden Tabelle dargestellt wird, wie die grundlegenden Messungen, die im M-Modus beschrieben werden, durchgeführt werden.

Messerfassung	Messelement	Beschreibung	Messmethode
Abmessungen	RVOT	Rechtsventrikulärer Ausflusstrakt	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
	LVOT	Linksventrikulärer Ausflusstrakt	
	AO	Aortenwurzel-Durchmesser	entiferimen.
	LA	Durchmesser des linken Vorhofs	
	ACS	Aortenklappen-Separation	
	HR	Herzfrequenz – linksventrikulär	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.
	RVAWd	Diastolische rechtsventrikuläre Vorderwanddicke	Einzelheiten sind Abschnitt 2.2.1
	RVIDd	Rechtsventrikulärer Innendurchmesser, enddiastolisch	Distanzmessung zu entnehmen.
	EPSS	Distanz zwischen Punkt E und dem interventrikulären Septum	
	MCS	Mitralklappen-Separation	
Time/Slope (Zeit/Neigung)	LVPEP	Linksventrikuläres Präejektionsintervall	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
	RVPEP	Rechtsventrikuläres Präejektionsintervall	
	MV DE	DE-Wellenamplitude der Mitralklappe	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
	MV E-F Slope	E-F-Slope (E-F-Neigung) der Mitralklappe	Einzelheiten sind Abschnitt 2.2.2 Neigungsmessung zu entnehmen.
	MV E Amp	E-Wellenamplitude in der Mitralklappe	Einzelheiten sind Abschnitt 2.2.1
	MV A Amp	A-Wellenamplitude in der Mitralklappe	Distanzmessung zu entnehmen.


7.3.1 Bewertung des linken Ventrikels

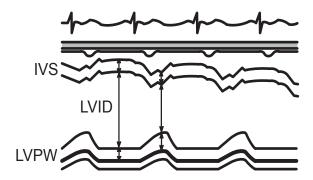
Der linke Ventrikel kann mithilfe folgender Methoden im M-Modus beurteilt werden.

- Cube
- Teichholz

7.3.1.1 Cube

Bei dieser Messmethode wird das LV-Volumen näherungsweise durch Messung eines Cubes berechnet.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf Cardiac -> Volume (Herz -> Volumen) im Messungsmenü klicken.
- 3. Ein Messelement unter **Cube (LV)** auswählen, um die Messungen nacheinander durchzuführen.


Messelement	Beschreibung	Messmethode
IVSd	Diastolische interventrikuläre Septumdicke	Einzelheiten sind Abschnitt 2.2.1
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch	Distanzmessung zu entnehmen.
LVPWd	Diastolische linksventrikuläre Hinterwanddicke	
IVSs	Systolische interventrikuläre Septumdicke	
LVIDs	Linksventrikulärer Innendurchmesser, endsystolisch	
LVPWs	Systolische linksventrikuläre Hinterwanddicke	

Das Sv	stem berechnet	anhand der N	Messergebnisse	automatisch	die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
EDV	Linksventrikuläres enddiastolisches Volumen (ml)	EDV=LVIDd3
ESV	Linksventrikuläres endsystolisches Volumen (ml)	ESV=LVIDds3
SV	Schlagvolumen (ml)	SV = EDV-ESV
СО	Herzzeitvolumen (l/min)	CO = SV×HR
EF	Ejektionsfraktion	EF = SV/EDV
SI	Schlagvolumenindex	SI = SV/BSA
CI	Herzindex	CI = CO/BSA
FS	Verkürzungsfraktion	FS= (LVIDd-LVIDs) /LVIDd
IVS%	Interventrikuläre Septumdicke in %	IVS%= (IVSs-IVSd) /IVSd ×100%
LVPW%	Linksventrikuläre Hinterwanddicke in %	LVPW%= (LVPWs-LVPWd) /IVPWd ×100%

7.3.1.2 Teichholz

Bei dieser Messmethode wird das LV-Volumen näherungsweise durch Messung eines Cubes berechnet.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf Cardiac (Herz) im Messungsmenü klicken.
- Auf Dimensions -> IVSd (Abmessungen -> IVSd) klicken oder auf Volume (Volumen) -> ein Messelement unter Teichholz (LV) klicken, um die Messungen nacheinander durchführen.

Messelement	Beschreibung	Messmethode
IVSd	Diastolische interventrikuläre Septumdicke	Einzelheiten sind Abschnitt 2.2.1
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch	Distanzmessung zu entnehmen.
LVPWd	Diastolische linksventrikuläre Hinterwanddicke	
IVSs	Systolische interventrikuläre Septumdicke	
LVIDs	Linksventrikulärer Innendurchmesser, endsystolisch	
LVPWs	Systolische linksventrikuläre Hinterwanddicke	

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
EDV	Linksventrikuläres enddiastolisches Volumen (ml)	$EDV = \frac{7 \times LVIDd^3}{2.4 + LVIDd}$
ESV	Linksventrikuläres endsystolisches Volumen (ml)	$ESV = \frac{7 \times LVIDs^3}{2.4 + LVIDs}$
SV	Schlagvolumen (ml)	SV = EDV-ESV
СО	Herzzeitvolumen (l/min)	CO = SV×HR
EF	Ejektionsfraktion	EF = SV/EDV
SI	Schlagvolumenindex	SI = SV/BSA
CI	Herzindex	CI = CO/BSA
FS	Verkürzungsfraktion	FS= (LVIDd-LVIDs) /LVIDd
IVS%	Interventrikuläre Septumdicke in %	IVS%= (IVSs-IVSd) /IVSd ×100%
LVPW%	Linksventrikuläre Hinterwanddicke in %	LVPW%= (LVPWs-LVPWd) /IVPWd ×100%
IVS/LVPW	Interventrikuläre Septum-/ Linksventrikuläre Hinterwanddicke	IVS/LVPW=IVSd/LVPWd

7.3.1.3 Linksventrikuläre Masse

Die linksventrikuläre Masse kann anhand der Messelemente IVSd, LVIDd und LVPWd im M-Modus beurteilt werden.

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf Cardiac -> LV Mass (Herz -> LV-Masse) im Messungsmenü klicken.
- 3. Auf IVSd, LVIDd oder LVPWd klicken, um die Messungen nacheinander zu starten.

Messelement	Beschreibung	Messmethode
IVSd	Diastolische interventrikuläre Septumdicke	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch	
LVPWd	Diastolische linksventrikuläre Hinterwanddicke	

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
LVM(Cube)	Linksventrikuläre Masse	LVM(Cube)=0,8×1,04×[(IVSd+LVIDd+
	(Cube)	LVPWd)3-LVIDd3]+0,6

7.3.2 Berechnung des TEI-Index

Im M-Modus kann der linksventrikuläre TEI-Index durch Messung von MV C-O Dur und LVET (b) sowie der rechtsventrikulärer TEI-Index durch Messung von TV C-O Dur und RVET (b) berechnet werden.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf Cardiac -> Time/Slope (Herz -> Zeit/Neigung) im Messungsmenü klicken.
- 3. Ein Messelement unter LV TEI oder RV TEI auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
MV C-O Dur (a)	Öffnungs- und Schließzyklen der Mitralklappe	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu
LVET (b)	Linksventrikuläre Ejektionszeit	entnehmen.
TV C-O Dur (a)	Öffnungs- und Schließzyklen der Trikuspidalklappe	
RVET (b)	Rechtsventrikuläre Ejektionszeit	

Das System berechnet anhand der Messergebnisse automatisch die folgenden Elemente.

Berechnungselement	Beschreibung	Formel
LV TEI	Linksventrikulärer TEI- Index	LV TEI=(MV C-O Dur (a) - LVET (b))/ LVET (b)
RV TEI	Rechtsventrikulärer TEI- Index	RV TEI=(TV C-O Dur (a)- RVET (b))/ RVET (b)

7.4 Messungen im Spektral-Doppler-Modus

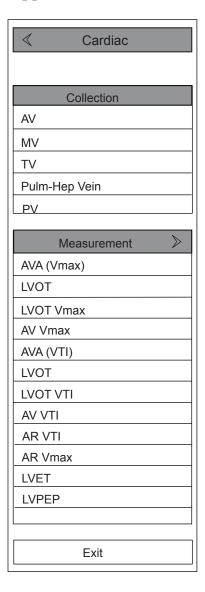
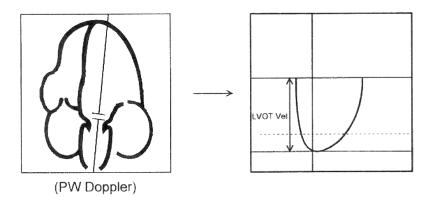
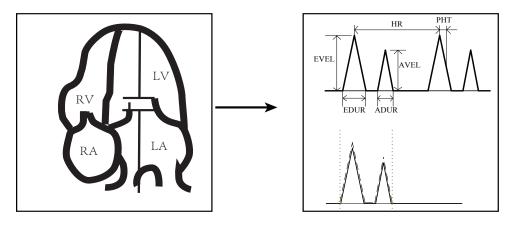



Abbildung 7-6 Kardiologisches Messungsmenü im Spektral-Doppler-Modus

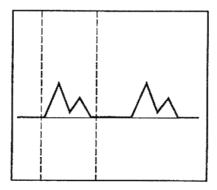
7.4.1 Aortenklappe

Die Flussgeschwindigkeits-Messung zur Bestimmung der Aortenklappe kann mithilfe folgender Abbildung im Spektral-Doppler-Modus durchgeführt werden.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf Cardiac -> AV (Herz -> AV) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung zu starten.


Messelement		Beschreibung	Messmethode
AVA(Vmax)	LVOT Vmax	Linksventrikulärer Ausflusstrakt Maximale Geschwindigkeit	LVOT-Messungen im 2D/ M-Modus durchführen. Einzelheiten sind Abschnitt 7.1.6 Durchmesser
		über den linksventrikulären Ausflusstrakt	des links-/rechtsventrikulären Ausflusstrakts oder Abschnitt 7.3 M-Modus-
	AV Vmax	Maximale Geschwindigkeit über die Aortenklappe	Messungen zu entnehmen. • LVOT Vmax- und AV Vmax- Messungen im PW/CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen. Das System zeigt das AVA- Ergebnis nach der Durchführung aller Messungen automatisch an.

Messelement		Beschreibung	Messmethode
AVA(VTI)	LVOT	Linksventrikulärer Ausflusstrakt	LVOT-Messung im 2D/ M-Modus durchführen. Einzelheiten sind
	LVOT VTI	Geschwindigkeits- Zeit-Integral im linksventrikulären Ausflusstrakt	Abschnitt 7.1.6 Durchmesser des links-/rechtsventrikulären Ausflusstrakts oder Abschnitt 7.3 M-Modus-
	AV VTI	Geschwindigkeits-Zeit- Integral in der Aortenklappe	Messungen zu entnehmen. • LVOT VTI- und AV VTI- Messungen im PW/CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt das AVA- Ergebnis nach der Durchführung aller Messungen automatisch an.
PISA-AR	AR Rad	Radius der Aortenklappenstenose	AR Rad-Messung im Farbflussmodus durchführen. Einzelheiten sind Abschnitt 7.2 Messungen im Farbflussmodus
	AR VTI	Geschwindigkeits-Zeit- Integral der Aortenklappen- Regurgitation	zu entnehmen. • AR VTI-Messung im PW/ CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
			Das System zeigt die PISA- Ergebnisse nach der Durchführung aller Messungen automatisch an.
AR VTI		Geschwindigkeits-Zeit- Integral der Aortenklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
AR Vmax		Maximale Geschwindigkeit der Aortenklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.


Messelement	Beschreibung	Messmethode
LVET	Linksventrikuläre Ejektionszeit	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
LVPEP	Linksventrikuläres Präejektionsintervall	
IVCT	Linksventrikuläre isovolumetrische Kontraktionszeit	
IVRT	Linksventrikuläre isovolumetrische Relaxationszeit	
AR DecT	Dezelerationszeit der Aortenklappen- Regurgitation	
AR PHT	Druckhalbwertszeit der Aortenklappen- Regurgitation	 Den Cursor mit dem Trackball an die gewünschte Position bewegen und die Bestätigungstaste auf dem Bedienfeld drücken; das System zeigt eine gestrichelte Linie an. Den Cursor mit dem Trackball an die gewünschte Position auf der gestrichelten Linie bewegen und die Bestätigungstaste drücken; das System berechnet automatisch die Druckhalbwertszeit.
AV Vmax	Maximale Geschwindigkeit über die Aortenklappe	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
AV VTI	Geschwindigkeits-Zeit- Integral der Aortenklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
HR	Herzfrequenz	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.

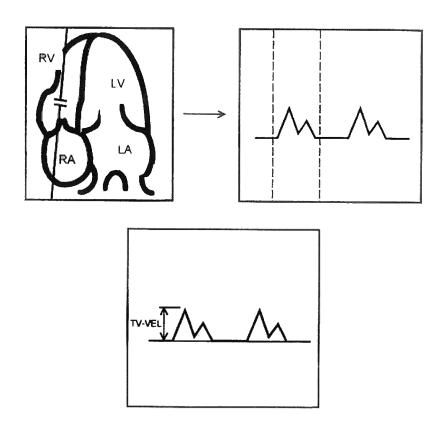
7.4.2 Mitralklappe

Die Messungen der E-Wellen-Geschwindigkeit, A-Wellen-Geschwindigkeit, E-Wellen-Dauer, PHT-Dauer der A-Welle, die PISA für die Mitralklappe können mithilfe folgender Abbildung im Spektral-Doppler-Modus durchgeführt werden.

Kurvenmessung der Geschwindigkeit in der Mitralklappe mithilfe folgender Abbildung durchführen.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf Cardiac -> MV (Herz -> MV) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung durchzuführen.

Messelement	Beschreibung	Messmethode
MV E Vel	Maximale E-Wellen-	Einzelheiten sind Abschnitt 2.4.1
	Geschwindigkeit in der	Geschwindigkeitsmessung zu
	Mitralklappe	entnehmen.
MV A Vel	Maximale A-Wellen-	
	Geschwindigkeit in der	
	Mitralklappe	


Messelement	Beschreibung	Messmethode
MV E Dur	E-Wellen-Dauer in der Mitralklappe	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
MV A Dur	A-Wellen-Dauer in der Mitralklappe	
MVA(PHT)	Druckhalbwertszeit in der Mitralklappenöffnungsfläche	 Den Cursor mit dem Trackball an die gewünschte Position bewegen und die Bestätigungstaste auf dem Bedienfeld drücken; das System zeigt eine gestrichelte Linie an. Den Cursor mit dem Trackball an die gewünschte Position auf der gestrichelten Linie bewegen und die Bestätigungstaste drücken; das System berechnet automatisch die Druckhalbwertszeit.
MV DecT	Dezelerationszeit der Mitralklappe	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
MR Vmax	Maximale Geschwindigkeit der Mitralklappen-Regurgitation	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
MR VTI	Geschwindigkeits-Zeit- Integral der Mitralklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.

Messelement		Beschreibung	Messmethode
MVA(VTI)	LVOT	Linksventrikulärer Ausflusstrakt	LVOT-Messung im 2D/M-Modus durchführen. Einzelheiten sind Abschnitt 7.1.6 Durchmesser des links-/rechtsventrikulären Ausflusstrakts oder Abschnitt 7.3 M-Modus-Messungen zu entnehmen.
	LVOT VTI	Geschwindigkeits-Zeit- Integral im linksventrikulären Ausflusstrakt	
	MV VTI	Geschwindigkeits- Zeit-Integral der Regurgitation in der Mitralklappenöffnungsfläche	LVOT VTI- und MV VTI- Messungen im PW/CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt das MVA-Ergebnis nach der Durchführung aller Messungen automatisch an.
LV TEI	MV C-O Dur (a)	Öffnungs- und Schließzyklen der Mitralklappe	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
	LVET (b)	Linksventrikuläre Ejektionszeit	

Messelement		Beschreibung	Messmethode
PISA-MR	MR Rad	Radius der Mitralklappenstenose	MR Rad-Messung im Farbflussmodus durchführen. Einzelheiten sind Abschnitt 7.2 Messungen im Farbflussmodus zu entnehmen.
	MR VTI	Geschwindigkeits-Zeit- Integral der Mitralklappen- Regurgitation	MR VTI-Messung im PW/CW- Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt die PISA- Ergebnisse nach der Durchführung aller Messungen automatisch an.
PISA-MS	MS Rad	Radius der Mitralklappenstenose	MS Rad-Messung im Farbflussmodus durchführen. Einzelheiten sind Abschnitt 7.2 Messungen im Farbflussmodus zu entnehmen.
	MS VTI	Geschwindigkeits-Zeit- Integral der Mitralklappen- Regurgitation	MS VTI-Messung im PW/CW- Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt die PISA- Ergebnisse nach der Durchführung aller Messungen automatisch an.

7.4.3 Trikuspidalklappe

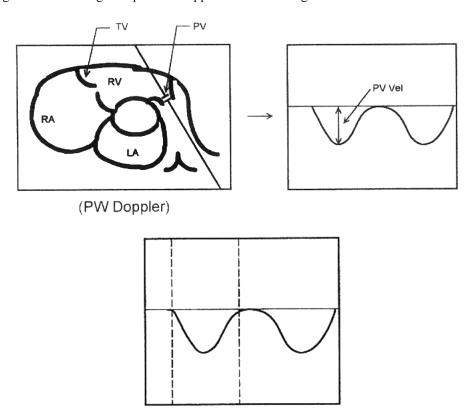
Die Flussgeschwindigkeits-Messung zur Bestimmung der Trikuspidalklappe kann mithilfe folgender Abbildung im Spektral-Doppler-Modus durchgeführt werden.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf Cardiac -> TV (Herz -> TV) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung durchzuführen.

Messelement	Beschreibung	Messmethode
TV E Vel	Maximale E-Wellen- Geschwindigkeit in der Trikuspidalklappe	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
TV A Vel	Maximale A-Wellen- Geschwindigkeit in der Trikuspidalklappe	
TV VTI	Maximales Geschwindigkeits- Zeit-Integral in der Trikuspidalklappe	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
TV Vmax	Maximale Geschwindigkeit über die Trikuspidalklappe	Einzelheiten sind folgendem Abschnitt zu entnehmen 2.4.1 Geschwindigkeitsmessung

Messeleme	ent	Beschreibung	Messmethode
RVSP	TR Vmax	Maximale Geschwindigkeit der Trikuspidalklappen- Regurgitation	Einzelheiten sind folgendem Abschnitt zu entnehmen 2.4.1 Geschwindigkeitsmessung
	RAP	Systolischer Druck im rechten Vorhof	 Auf RAP klicken und den gewünschten RAP-Wert in das Popup-Dialogfeld manuell eingeben oder im Dialogfeld auswählen. Oder den RAP-Wert auf der Registerkarte Cardiac (Herz) des Bildschirms New Patient (Neuer Patient) manuell eingeben.
PISA-TR	TR Rad TR VTI	Radius der Trikuspidalklappenstenose Geschwindigkeits-Zeit-Integral der Trikuspidalklappen- Regurgitation	 TR Rad-Messung im Farbflussmodus durchführen. Einzelheiten sind Abschnitt 7.2 Messungen im Farbflussmodus zu entnehmen. TR VTI-Messung im PW/
			CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt die PISA-Ergebnisse nach der Durchführung aller Messungen automatisch an.
RV TEI	TV C-O Dur	Öffnungs- und Schließzyklen der Trikuspidalklappe	Einzelheiten sind Abschnitt 2.4.8
	(a) RVET (b)	Rechtsventrikuläre Ejektionszeit	Zeitmessung zu entnehmen.

7.4.4 Pulmonal- und Lebervenen


Messungen der Werte "Pulm S Vel", "Pulm A Vel", "Pulm D Vel", "Hep S Vel", "Hep A Vel" und "Hep D Vel" sind im PW/CW-Modus verfügbar.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf Cardiac -> Pulm-Hep Vein (Herz -> Pulmonal-Lebervene) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messelement	Beschreibung	Messmethode
Pulm S Vel	S-Wellen-Flussgeschwindigkeit in der Pulmonalvene	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
Pulm S VTI	Geschwindigkeits-Zeit-Integral der S-Welle in der Pulmonalvene	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
Pulm A Vel	A-Wellen-Flussgeschwindigkeit in der Pulmonalvene	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
Pulm D Vel	D-Wellen-Flussgeschwindigkeit in der Pulmonalvene	
Pulm D VTI	Geschwindigkeits-Zeit-Integral der D-Welle in der Pulmonalvene	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
Pulm A Dur	A-Wellen-Dauer in der Pulmonalvene	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.
Pulm DecT	Dezelerationszeit in der Pulmonalvene	
Hep S Vel	S-Wellen-Flussgeschwindigkeit in der Lebervene	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
Hep D Vel	D-Wellen-Flussgeschwindigkeit in der Lebervene	
Hep A Vel	A-Wellen-Flussgeschwindigkeit in der Lebervene	
Hep A Dur	A-Wellen-Dauer in der Lebervene	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.

7.4.5 Pulmonalklappe

Die Flussgeschwindigkeits-Messung zur Bestimmung der Pulmonalklappe kann mithilfe folgender Abbildung im Spektral-Doppler-Modus durchgeführt werden.

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf Cardiac -> PV (Herz -> PV) im Messungsmenü klicken.
- 3. Ein Messelement auswählen, um die Messung durchzuführen.

Messelement	Beschreibung	Messmethode
PR Vmax	Maximale Geschwindigkeit der Pulmonalklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
PR VTI	Geschwindigkeits-Zeit- Integral der Pulmonalklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
PV AccT	Akzelerationszeit der Pulmonalklappe	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.

Messelement		Beschreibung	Messmethode	
MPA Vmax		Maximale Geschwindigkeit in der Hauptpulmonalarterie	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu	
RPA Vmax		Maximale Geschwindigkeit in der rechten Pulmonalarterie	entnehmen.	
LPA Vmax		Maximale Geschwindigkeit in der linken Pulmonalarterie		
RVET		Rechtsventrikuläre Ejektionszeit	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.	
RVPEP		Rechtsventrikuläres Präejektionsintervall		
HR		Herzfrequenz	Einzelheiten sind Abschnitt 2.4.8 Zeitmessung zu entnehmen.	
PAEDP PR Ved		Enddiastolische Geschwindigkeit der Pulmonalklappen- Regurgitation	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.	
RAP		Systolischer Druck im rechten Vorhof	 Auf RAP klicken und den gewünschten RAP-Wert in das Popup-Dialogfeld manuell eingeben oder im Dialogfeld auswählen. Oder den RAP-Wert auf der Registerkarte Cardiac (Herz) des Bildschirms New Patient (Neuer Patient) manuell eingeben. 	

Messelement		Beschreibung	Messmethode	
PISA-PR	PR Rad	Radius der Pulmonalklappenstenose	PR Rad-Messung im Farbflussmodus durchführen. Einzelheiten sind Abschnitt 7.2	
	PR VTI	Geschwindigkeits-Zeit- Integral der Pulmonalklappen- Regurgitation	Messungen im Farbflussmodus zu entnehmen. • PR VTI-Messung im PW/CW-Modus durchführen. Einzelheite sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt das Ergebnis nach der Durchführung aller Messunger automatisch an.	
PVA(Vmax)	RVOT	Rechtsventrikulärer Ausflusstrakt	 RVOT-Messung im 2D/ M-Modus durchführen. Einzelheiten sind Abschnitt 7.1.6 Durchmesser des 	
	RVOT Vmax	Maximale Geschwindigkeit über den rechtsventrikulären Ausflusstrakt	links-/rechtsventrikulären Ausflusstrakts oder Abschnitt 7.3 M-Modus-Messungen zu entnehmen.	
PV Vmax Maximale Geschwindigkeit über die Pulmonalklappe	RVOT Vmax- und PV Vmax-Messungen im PW/ CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.			
			Das System zeigt das PVA-Ergebnis nach der Durchführung aller Messungen automatisch an.	

Messelement		Beschreibung	Messmethode
PVA(VTI)	RVOT RVOT VTI	Rechtsventrikulärer Ausflusstrakt Geschwindigkeits-Zeit- Integral im rechtsventrikulären Ausflusstrakt	RVOT-Messung im 2D/ M-Modus durchführen. Einzelheiten sind Abschnitt 7.1.6 Durchmesser des links-/rechtsventrikulären Ausflusstrakts oder Abschnitt 7.3 M-Modus-Messungen zu
	PV VTI	Geschwindigkeits-Zeit-Integral in der Pulmonalklappe	entnehmen. • RVOT VTI- und PV VTI- Messungen im PW/CW-Modus durchführen. Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Das System zeigt das PVA-Ergebnis nach der Durchführung aller Messungen automatisch an.

8 Small-Parts-Messungen und -berechnungen

 $Small-Parts-Messungen\ und\ -Berechnungen\ sind\ im\ 2D-Modus\ (B/CFM/PDI/TDI),\ im\ M-Modus\ und\ im\ Spektral-Doppler-Modus\ (PW/CW)\ verfügbar.$

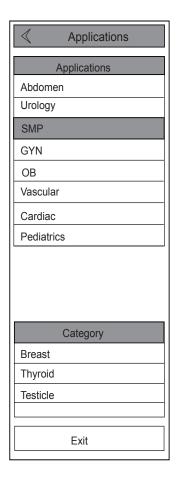


Abbildung 8-1 Small-Parts-Messungsmenü

8.1 Messungen im 2D-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf **SMP** im Messungsmenü klicken und eine Messkategorie wie **Breast** (Brust) auswählen.
- 3. Eine Messerfassung wie Lt Lesion1 (Läsion1, links) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten.

Messkategorie	Messerfassung	Messelement	Messmethode
Breast (Brust)	Lt(Rt) Lesion1	Nipple-Les. Dist	Einzelheiten sind
	Lt(Rt) Lesion2	Skin-Les. Dist	folgendem Abschnitt
	Lt(Rt) Lesion3	Length (Länge)	zu entnehmen 2.1.1.1 Zweipunktmessung
	Lt(Rt) Lesion4	Width (Breite) Height (Höhe)	
	Lt(Rt) Lesion5	Treight (Holle)	
Schilddrüse	Lt(Rt) Thyroid	Length (Länge)	Einzelheiten sind
	Lt(Rt) Sup. ParThyroid	Height (Höhe)	folgendem Abschnitt zu entnehmen 2.1.1.1
	Lt(Rt) Inf. ParThyroid	Width (Breite)	Zweipunktmessung
	Thyroid Ist.	Ist. AP	
	Lt(Rt) STA (Obere Schilddrüsenarterie, links (rechts))	Vessel Diam (Gefäßdurchmesser)	
	Lt(Rt) ITA (Untere Schilddrüsenarterie, links (rechts))		
Hoden	Lt(Rt) Testicle (Hoden,	Length (Länge)	Einzelheiten sind
	links (rechts))	Height (Höhe) Width (Breite)	folgendem Abschnitt zu entnehmen 2.1.1.1 Zweipunktmessung

8.2 M-Modus-Messungen

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf **SMP** im Messungsmenü klicken und eine Messkategorie wie **Breast** (Brust) auswählen.
- 3. Eine Messerfassung wie Vessel (Gefäß) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten.

Messkategorie	Messerfassung	Messelement	Messmethode	
Breast (Brust)	Gefäß	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.	
		%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose-Distanzmessung zu entnehmen.	
		Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.	
		HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.	
Schilddrüse	Lt(Rt) STA (Obere Schilddrüsenarterie,	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.	
	links (rechts)) Lt(Rt) ITA (Untere	Lt(Rt) ITA (Untere	Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
	Schilddrüsenarterie, links (rechts))	HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.	
Hoden	Lt(Rt) Vessel (Gefäß, links (rechts))	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.	
		Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.	
		HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.	

8.3 Messungen im Spektral-Doppler-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf **SMP** im Messungsmenü klicken und eine Messkategorie wie **Breast** (Brust) auswählen.
- 3. Eine Messerfassung wie Vessel (Gefäß) auswählen.
- 4. Ein Messelement auswählen, um die Messung zu starten.

Messkategorie	Messerfassung	Messelement	Messmethode
Breast (Brust) Schilddrüse	Gefäß Lt(Rt) STA (Obere Schilddrüsenarterie, links (rechts)) Lt(Rt) ITA (Untere Schilddrüsenarterie, links (rechts))	PS ED RI PI PS,ED,RI,SD Auto Trace (Automatische Kurvenmessung)	 Einzelheiten zur PS- und ED- Methode sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen. Einzelheiten zur RI- Methode sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen. Einzelheiten zur PI-
Hoden	Lt(Rt) Vessel (Gefäß, links (rechts))	Manual Trace (Manuelle Kurvenmessung) Time (Zeit) HR	 Methode sind Abschnitt 2.4.4 Pulsatilitätsindexmessung zu entnehmen. Einzelheiten zur PS-, ED-, RI- und SD-Methode sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen. Einzelheiten zur automatischen Kurvenmethode sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen. Einzelheiten zur manuellen Kurvenmethode sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen. Einzelheiten zur Zeitmethode sind Abschnitt 2.4.8 Zeitmessung zu entnehmen. Einzelheiten zur Herzfrequenzmethode sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.

9 Urologische Messungen und Berechnungen

Urologische Messungen und Berechnungen sind im 2D-Modus (B/CFM/PDI/TDI), im M-Modus und im Spektral-Doppler-Modus (PW/CW) verfügbar.

9.1 Messungen im 2D-Modus

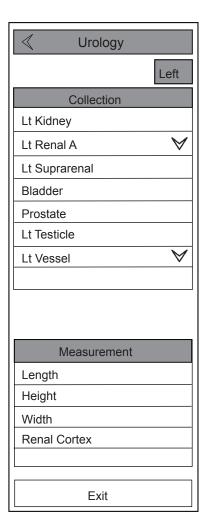


Abbildung 9-1 Urologisches Messungsmenü im 2D-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- Auf Urology (Urologie) im Messungsmenü klicken und eine Messerfassung wie Lt Kidney (Niere, links) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Kidney (Niere,	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1
links (rechts))	Height (Höhe)	Zweipunktmessung zu entnehmen.
	Width (Breite)	
	Nierenkortex	
Lt(Rt) Renal A (Nierenarterie, links/	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.1.1.1 Zweipunktmessung zu entnehmen.
rechts) Lt(Rt) Vessel (Gefäß, links (rechts))	Vessel Area (Gefäßbereich)	 Einzelheiten zur 2D-Kurvenmethode sind Abschnitt 2.1.2.1 Kurvenbereichsmessung zu entnehmen. Einzelheiten zur 2D-Ellipsenmethode sind Abschnitt 2.1.2.2 Ellipsenbereichsmessung zu entnehmen.
	%Sten(D)	Einzelheiten sind Abschnitt 2.1.1.4 %Stenose-Distanz zu entnehmen.
	%Sten(A)	Einzelheiten sind Abschnitt 2.1.2.3 Bereichsverhältnismessung zu entnehmen.
Lt(Rt) Suprarenal (links	Length (Länge)	Einzelheiten sind Abschnitt 2.1.1.1
(rechts)) Blase	Height (Höhe)	Zweipunktmessung zu entnehmen.
Prostata Lt(Rt) Testicle (Hoden, links (rechts))	Width (Breite)	

9.2 M-Modus-Messungen

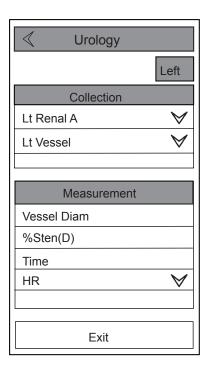
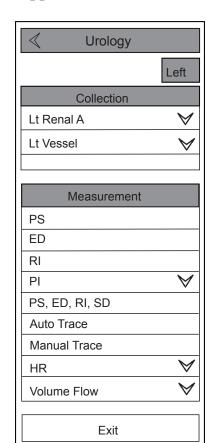



Abbildung 9-2 Urologisches Messungsmenü im M-Modus

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im M-Modus drücken.
- 2. Auf **Urology** (Urologie) im Messungsmenü klicken und eine Messerfassung wie **Lt Renal A** (Nierenarterie, links/rechts) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Renal A (Nierenarterie, links/ rechts) Lt(R) Vessel (Gefäß, links (rechts))	Vessel Diam (Gefäßdurchmesser)	Einzelheiten sind Abschnitt 2.2.1 Distanzmessung zu entnehmen.
	%Sten(D)	Einzelheiten sind Abschnitt 2.2.3 %Stenose- Distanzmessung zu entnehmen.
	Time (Zeit)	Einzelheiten sind Abschnitt 2.2.5 Zeitmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.2.6 Herzfrequenzmessung zu entnehmen.

9.3 Messungen im Spektral-Doppler-Modus

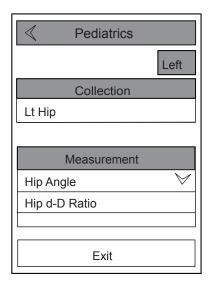
Abbildung 9-3 Urologisches Messungsmenü im Spektral-Doppler-Modus

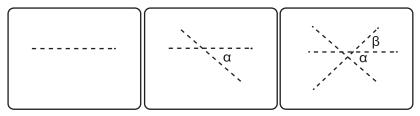
- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im PW/CW-Modus drücken.
- 2. Auf **Urology** (Urologie) im Messungsmenü klicken und eine Messerfassung wie **Lt Renal A** (Nierenarterie, links/rechts) auswählen.
- 3. Ein Messelement auswählen, um die Messung zu starten.

Messerfassung	Messelement	Messmethode
Lt(Rt) Renal A (Nierenarterie, links/ rechts) Lt(Rt) Vessel (Gefäß, links (rechts))	PS	Einzelheiten sind Abschnitt 2.4.1 Geschwindigkeitsmessung zu entnehmen.
	RI	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
miks (recits))	PI	Einzelheiten sind Abschnitt 2.4.4 Pulsatilitätsindexmessung zu entnehmen.
	PS,ED,RI,SD	Einzelheiten sind Abschnitt 2.4.3 Widerstandsindexmessung zu entnehmen.
	Auto Trace (Automatische Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen.
	Manual Trace (Manuelle Kurvenmessung)	Einzelheiten sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.
	HR	Einzelheiten sind Abschnitt 2.4.9 Herzfrequenzmessung zu entnehmen.
	Volumen Flow (Volumenfluss)	 Einzelheiten zur automatischen Kurvenmethode sind Abschnitt 2.4.6 Automatische Kurvenmessung zu entnehmen. Einzelheiten zur manuellen Kurvenmethode sind Abschnitt 2.4.7 Manuelle Kurvenmessung zu entnehmen.

10 Pädiatrische Messungen und Berechnungen

Pädiatrische Messungen und Berechnungen für Kleinkinderhüften sind im 2D-Modus (B/CFM/PDI/TDI) verfügbar.



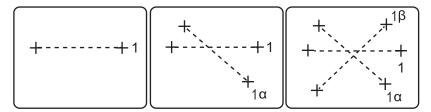

Abbildung 10-1 Pädiatrisches Messungsmenü

10.1 Hüftgelenkswinkel

Der Hüftgelenkswinkel kann mithilfe folgender Methoden im 2D-Modus beurteilt werden.

- 2D-Semi Auto
- 2D-3Dist

10.1.1 2D-Semi Auto



- Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
 Auf dem Bildschirm auf Applications > Pediatrics (Anwendungen > Pädiatrie) klicken.
- Das gewünschte Hüftgelenk wie z. B. Lt Hip (Hüfte, links) auswählen, auf Hip Angle (Hüftwinkel) klicken und die Messmethode auf 2D-Semi Auto einstellen. Auf dem Bildschirm wird eine gestrichelte Linie angezeigt.
- 3. Die Linie mit dem Trackball an die gewünschte Position bewegen und den Knopf **Angle** (Winkel) auf dem Bedienfeld drehen, um den Winkel der Linie einzustellen.
- 4. Zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken; die zweite gestrichelte Linie wird angezeigt.

- 5. Die zweite Linie an die gewünschte Position bewegen und den Knopf **Angle** (Winkel) drehen, um den gewünschten Winkel der zweiten Linie einzustellen.
- 6. Zum Bestätigen die Bestätigungstaste drücken; die dritte gestrichelte Linie wird angezeigt.
- 7. Die dritte Linie an die gewünschte Position bewegen und den Knopf **Angle** (Winkel) drehen, um den gewünschten Winkel einzustellen.
- 8. Die Bestätigungstaste drücken, um die Messung abzuschließen. Das System berechnet dann automatisch das Ergebnis.

10.1.2 2D-3Dist

Befolgen Sie die folgenden Schritte zur Durchführung der Messung.

- Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
 Auf dem Touchscreen auf Applications > Pediatrics (Anwendungen > Pädiatrie) klicken.
- 2. Das gewünschte Hüftgelenk, wie z. B. Lt Hip (Hüfte, links) auswählen, auf Hip Angle (Hüftwinkel) tippen und die Messmethode auf 2D-3Dist einstellen.
- Die Markierung mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Die zweite Markierung wird auf dem Bildschirm angezeigt.
- Die zweite Markierung an die gewünschte Position bewegen.
 Mithilfe der Taste Update (Aktualisieren) auf dem Bedienfeld kann die feste Markierung aktiviert werden.
- 5. Auf die Bestätigungstaste auf dem Bedienfeld drücken, um die erste Linie zu bestätigen.
- 6. Die Schritte 3-5 wiederholen, um die zweite Linie und dritte Linie zu bestätigen und die Messung abzuschließen. Das System berechnet dann automatisch das Ergebnis.

10.2 d-D Ratio (d-D-Verhältnis)

- 1. Die Taste Calc (Berechnen) auf dem Bedienfeld im 2D-Modus drücken.
- 2. Auf dem Bildschirm auf **Applications** > **Pediatrics** > **Lt Hip** (Anwendungen > Pädiatrie > Hüfte, links) klicken.

- 3. Auf **Hip d-D Ratio** (d-D-Verhältnis der Hüfte) klicken; eine gestrichelte Linie wird auf dem Bildschirm angezeigt.
- 4. Die Linie mithilfe des Trackballs an die gewünschte Position bewegen und zum Bestätigen die Bestätigungstaste auf dem Bedienfeld drücken. Es wird dann eine zweite gestrichelte Linie angezeigt.
- 5. Zweite Linie an die gewünschte Position bewegen und die Bestätigungstaste drücken. Es wird dann eine dritte gestrichelte Linie angezeigt.
- 6. Die Dritte Linie an die gewünschte Position bewegen und die Bestätigungstaste drücken, um die Messung abzuschließen. Das System berechnet dann automatisch das Ergebnis.

11 Messberichte

In den Messberichten sind alle Messergebnisse verzeichnet. Für alle Messungs- und Berechnungspakete wird ein individueller Messbericht erstellt.

Der Messbericht kann Patientendaten, Messergebnisse, Diagnoseergebnisse etc. enthalten. Im System werden zwei Kategorien von Messberichten bereitgestellt.

• Allgemeiner Messbericht

Es werden ausschließlich Patientendaten und individuelle Kommentare, jedoch keine Messergebnisse bereitgestellt. Sie können Kommentare im Bericht hinzufügen und ihn ausdrucken.

Anwendungsspezifischer Messbericht
 In dem Bericht werden die Messergebnisse zusammengestellt.

• Strukturierter DICOM-Bericht

Die codierten klinischen Daten werden basierend auf den anwendungsspezifischen Messungen für Geburtshilfe, Gynäkologie, Gefäße oder Herz erstellt und über das DICOM-Netzwerk an einen strukturierten Bericht-Server übertragen.

HINWEIS:

Alle im Bericht angezeigten Messergebnisse werden vom System automatisch berechnet.

In den folgenden Abschnitten dient der Geburtshilfebericht als Beispiel, um den Vorgang zur Erstellung des Messberichts zu beschreiben.

11.1 Überprüfen des Berichts

11.1.1 Überprüfen des Berichts

Mithilfe der Taste **Report** (Bericht) auf dem Bedienfeld kann der aktuelle Bericht während einer Messung überprüft werden, wie in Abbildung 11-1 dargestellt.

Auf eine Registerkarte für den Untersuchungstyp klicken, um den Messbericht anzuzeigen. Eine Registerkarte mit einem Sternchen weist darauf hin, dass für diesen Anwendungsteil Messungen durchgeführt werden.

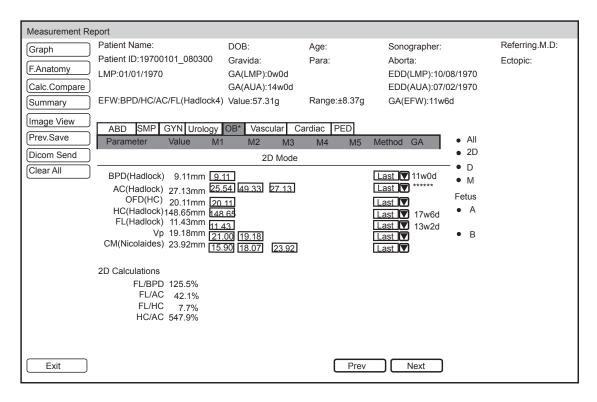


Abbildung 11-1 Bildschirm "Measurement Report" (Messbericht)

HINWEIS:

Im Bericht werden nur die letzten fünf Messwerte (M1-M5) für jedes Messelement gespeichert.

- Wenn der Bericht mehr als eine Seite anzeigt, auf **Prev** (Vorherige) oder **Next** (Nächste) klicken, um zur vorherigen oder zur nächsten Seite zu wechseln.
- Auf Exit (Beenden) klicken, um den Bildschirm zu beenden.

Auf dem Bildschirm **Measurement Report** (Messbericht) können zudem folgende Vorgänge durchgeführt werden.

- Den Cursor mit dem Trackball auf einen Messwert setzen und die Bestätigungstaste drücken, um diesen Messwert zu bestätigen und zu bearbeiten.
- Einen Messwert (z. B. M1: 25.54 unter AC) auswählen und die Taste Del (Entf) auf dem Bedienfeld drücken, um diesen Wert zu löschen. Der gelöschte Wert wird durch den folgenden Wert im selben Element (z. B. M2 49.33 unter AC) ersetzt.
- Für jedes Element die Berechnungsmethode (z. B. Aver (Durchschnittlich), Last (Letzte), Max (Maximal) und Mini (Minimal)) in der Spalte Method (Methode) einstellen; die Werte in der Spalte Value (Wert) werden entsprechend geändert.

- Den gewünschten Bildgebungsmodus auf der rechten Seite des Bildschirms auswählen, um den jeweiligen Bericht zu überprüfen. Sie können im Geburtshilfebericht auch verschiedene Berichte zum Fötus überprüfen.
- Auf die Taste Dicom Send (DICOM senden) klicken, um den strukturierten Dicom-Bericht an den Dicom-Server zu senden. Einzelheiten finden Sie im grundlegenden Benutzerhandbuch.
- Auf Clear All (Alle löschen) klicken, um alle Messelemente und Messdaten aus dem Bildschirm zu löschen.
- Auf Image View (Bildansicht) klicken, um die Bilder hinzuzufügen oder zu entfernen.
- Auf Summary (Zusammenfassung) klicken und im Textfeld des Popup-Fensters die Diagnoseinformationen eingeben, die im Bericht angezeigt werden.

11.1.2 Überprüfen eines archivierten Berichts

Führen Sie die folgenden Schritte durch, um einen archivierten Bericht zu überprüfen.

- 1. Patientendaten auswählen.
 - Die Taste **Patient** auf dem Bedienfeld drücken, auf **Patient List** -> **Patient Review** (Patientenliste -> Patientenüberprüfung) klicken und anschließend die gewünschte Patienteninformation aus der Liste auswählen.
- 2. Auf View (Anzeigen) klicken, um in den Bildschirm Exam Review (Untersuchungsüberprüfung) zu wechseln.
- 3. Auf **View Image** (Bild anzeigen) klicken, um in den Bildschirm **Review Exam** (Untersuchungsüberprüfung) zu wechseln.
- 4. Den Cursor mit dem Trackball auf eine Miniaturansicht setzen und zwei Mal hintereinander die Bestätigungstaste drücken.

11.2 Geburtshilfeberichte

11.2.1 Fötale Wachstumskurven

Mithilfe von fötalen Wachstumskurven können Sie das fötale Wachstum mit einer normalen Wachstumskurve vergleichen.

Befolgen Sie die folgenden Schritte, um fötale Wachstumskurven anzuzeigen.

1. Auf **Graph** auf dem Bildschirm **OB Measurement Report** (Geburtshilfemessbericht) klicken; das System zeigt standardmäßig eine einzige Wachstumskurve an.

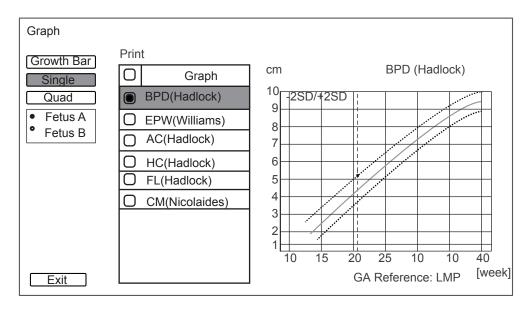


Abbildung 11-2 Fötale Wachstumskurve

Auf Quad (Vierfach) klicken, um mehr als eine Wachstumskurve anzuzeigen.

- 2. Den gewünschten Fötus auf der linken Seite des Bildschirms auswählen.
- Das gewünschte Messelement auswählen. Auf dem Bildschirm wird die entsprechende fötale Wachstumskurve angezeigt, wie in Abbildung 11-2 Fötale Wachstumskurve dargestellt.

Die oben genannten Schritte wiederholen, um andere fötale Wachstumskurven zu überprüfen und zum Bericht hinzuzufügen.

Wie in der Abbildung oben zu sehen, zeigt die X-Achse das Gestationsalter und die Y-Achse die Messergebnisse an. Die mittlere Kurve zeigt den median oder durchschnittlichen Wert des fötalen Wachstums an, während der Bereich zwischen zwei Kurven den normalen Wachstumsbereich des fötalen Wachstums darstellt.

Die Schnittmenge der gestrichelten Linie zeigt das berechnete Gestationsalter an, nachdem Sie das Datum in das Textfeld **LMP** oder **DOC** auf dem Bildschirm **New Patient** (Neuer Patient) eingegeben haben. Sie können das Wachstum des Fötus anhand der Schnittmenge beurteilen.

11.2.2 Wachstumsleiste

Die fötale Wachstumsleiste zeigt aktuelle Untersuchungsmessungen und den normalen Wachstumsbereich basierend auf dem Gestationsalter an.

Befolgen Sie die folgenden Schritte, um die Wachstumsleiste anzuzeigen.

 Auf Graph -> Growth Bar (Graph -> Wachstumsleiste) auf dem Bildschirm OB Measurement Report (Geburtshilfemessbericht) klicken, um den folgenden Bildschirm aufzurufen.

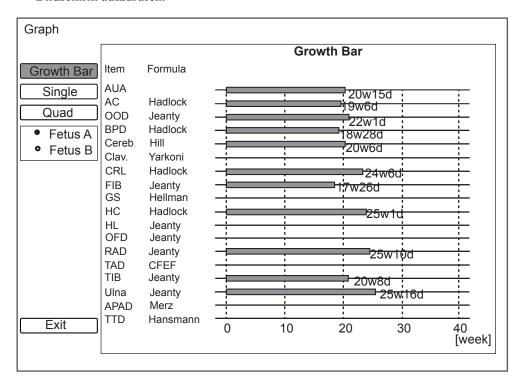


Abbildung 11-3 Fötale Wachstumsleiste

 Den gewünschten Fötus auswählen, auf dem Bildschirm wird die entsprechende Wachstumsleiste angezeigt.

11.2.3 Vergleich von Föten

Auf Calc (Berechnen) klicken. Auf Compare (Berechnungsvergleich) auf dem Bildschirm OB Measurement Report (Geburtshilfemessbericht) klicken, um mehrere Föten anzuzeigen.

Der Bericht für mehrere Föten erlaubt den Zugriff auf die Entwicklung mehrerer Föten. Wie in der folgenden Abbildung zu sehen ist werden für die Berechnung von AUA alle Messelemente für die gewünschten Föten herangezogen.

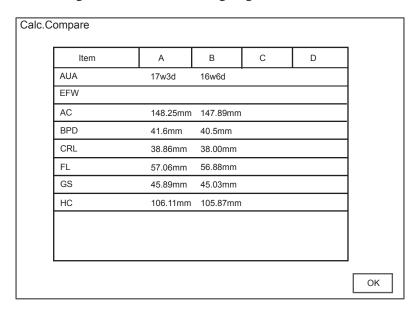


Abbildung 11-4 Vergleich von Föten

11.2.4 Anatomische Untersuchung

Die anatomische Untersuchung beinhaltet eine Checkliste, die angibt, welcher anatomische Bereich gescannt wurde sowie dessen Status.

Befolgen Sie die folgenden Schritte, um die Beschreibungen des Fötus zu bearbeiten.

 Auf F. Anatomy (Anatomie des Fötus) auf dem Bildschirm OB Measurement Report (Geburtshilfemessbericht) klicken, um den Bildschirm Fetus Anatomy (Anatomie des Fötus) aufzurufen.

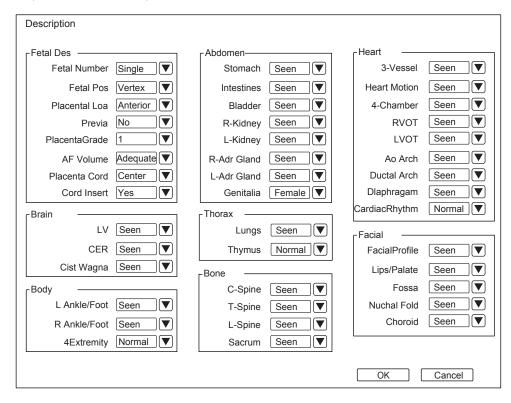


Abbildung 11-5 Anatomie des Fötus

 Mit dem Trackball eine Option aus den Dropdownlisten auswählen und zur Bestätigung die Bestätigungstaste drücken, um Einstellungen für dieses Element vorzunehmen.

11.3 Anzeigen einer Vorschau und Drucken des Berichts

11.3.1 Allgemeiner/Anwendungsspezifischer Messbericht

Sie können auf **Prev.** Auf **Save** (Vorschau und Speichern) auf dem Bildschirm **Measurement Report** (Messbericht) klicken, um eine Vorschau des Berichts anzuzeigen.

	OE	3 Report		
Patient Information				
Patient Name: Lili	Patient ID: 1970010 Sex: Female	01_113957_11		ate: 01/01/1970 on#: 123
Exam Information				
Exam Type: OB Gravida: 0 Ectopic: 0	Height (cm): 16 Para: 0	60	Weight (kg): 4 Aborta: 0	49
Sonographer: admin Chief Compliant: Past History: Comments:	Referring.M.D:		Performing.M	1.D:
LMP: 01/01/1970	GA (LMP): 0w0	Od	EDD(LMP):	10/08/1970
Fetus A GA(AUA): EFW(AC/B	13w1d PD/FL/HC): 69.81g	Range: 10g		UA): 07/02/1970 W): 12w5d
Measurements				
Mother				
2D Mode Item	M1-M5	Value	Unit	
Unilateral Side Ut-Endom.Th.	21.54	21.54 (Last)	mm	
CervixL	30.02	30.02 (Last)	mm	
Fetus A				
2D Mode Item	M1-M5	Value	Unit	GA
Unilateral Side FHR	297	297 (Last)	mm	17w5d
Atrial FHR	234	234 (Last)	mm	27w3d
Conclusion				
Summary				
Recommendations	<u> </u>			
Operator:		- I	Perf,Physician	:
	Print	Exit		

- Auf **Print** (Drucken) klicken oder die Taste **Print** (Drucken) auf dem Bedienfeld drücken, um den Bericht auszudrucken.
- Auf Exit (Beenden) klicken oder die Taste Esc auf dem Bedienfeld drücken um den Bildschirm zu verlassen und zum Bildschirm Measurement Report (Messbericht) zurückzukehren.

11.3.2 Strukturierter DICOM-Bericht

Ein strukturierter DICOM-Bericht kann nur aus dem anwendungsspezifischen Messbericht auf dem Ultraschallsystem generiert werden. Nach dem Senden an den DICOM-Server können Sie eine Vorschau des strukturierten Berichts anzeigen und diesen ausdrucken.

HINWEIS:

Auf dem Ultraschallsystem ist keine Vorschau des strukturierten DICOM-Berichts verfügbar.

Befolgen Sie die nachstehend aufgeführten Schritte, um eine Vorschau und einen Ausdruck des Berichts zu erhalten.

- Auf Dicom Send (DICOM senden) klicken, um den strukturierten Bericht an den DICOM-Server zu senden. Einzelheiten finden Sie im grundlegenden Benutzerhandbuch.
- Strukturierten Bericht auf dem DICOM-Server als Vorschau anzeigen und ausdrucken.
 Für eine Vorschau des Berichts sollten Sie eine spezifische Software installieren.

Anhang Abkürzungen von klinischen Mess- und Berechnungselementen

 \mathbf{A}

Abkürzung	Beschreibung
%Sten(A)	Flächenverringerung in %
%Sten(D)	Distanzverringerung in %
a	Geringste Geschwindigkeit während der Vorhofsystole
a	Große Halbachse vom größten Nebenachsenradius zum Apex
A2Cd	Enddiastole im Zweikammerblick
A2Cs	Endsystole im Zweikammerblick
A4Cd	Enddiastole im Vierkammerblick
A4Cs	Endsystole im Vierkammerblick
Aa lateral	Spätdiastolische laterale Bewegung der Mitralklappe
Aa Medial	Spätdiastolische mediale Bewegung der Mitralklappe
Aborta	Anzahl der Abtreibungen
AC	Abdomenumfang
Accel.	Beschleunigung
AFI	Fruchtwasserindex
Ant	Vorder-, vordere
Ant Tib A	Vordere Schienenbeinarterie (lat. Arteria tibialis anterior)
Ant Tib V	Vordere Schienenbeinvene (lat. Vena tibialis anterior)
Ao	Aorta
AO	Aortenwurzel-Durchmesser
Aorta	Aorta
AR DecT	Dezelerationszeit der Aortenklappen-Regurgitation
AR PHT	Druckhalbwertszeit der Aortenklappen-Regurgitation
AR Rad	Radius der Aortenklappenstenose

Abkürzung	Beschreibung
AR Vmax	Maximale Geschwindigkeit der Aortenklappen-Regurgitation
AR VTI	Geschwindigkeits-Zeit-Integral des Umkehrflusses in der Aortenklappe
Art.	Arterie
ACS	Aortenklappen-Separation
AUA	Durchschnittliches Ultraschallalter
AV Vmax	Maximale Geschwindigkeit über die Aortenklappe
AV VTI	Geschwindigkeits-Zeit-Integral in der Aortenklappe
AVA	Aortenklappenöffnungsfläche
AVA(VTI)	Aortenklappenöffnungsfläche (Geschwindigkeits-Zeit-Integral)
Axill A	Achselarterie
Axill V	Achselvene

В

Abkürzung	Beschreibung
Basilic V	Vena basilica
Blase	Blase
BOD	Binokulare Disparität
BPD	Biparietaler Durchmesser
Brach A	Oberarmarterie (lat. Arteria brachialis)
Brach V	Armvene (lat. Vena brachialis)
Bulb	Bulbus der Halsschlagader

 \mathbf{C}

Abkürzung	Beschreibung
c.s.p	Cavum septi pellucidi
Carotid	Halsschlagader (lat. Arteria carotis)
CCA	Gemeinsame Halsschlagader (lat. Arteria carotis communis)
Celiac.A.	Bauchhöhlenarterie (lat. Arteria coeliaca)

Abkürzung	Beschreibung
Ceph V	Vena cephalica
Cereb	Kleinhirndurchmesser
CI	Cephalischer Index
CI	Herzindex
Clav.	Schlüsselbein
CM	Cisterna Magna
СО	Herzzeitvolumen
Com	Gemeinsame
Com Fem A	Gemeinsame Oberschenkelarterie (lat. Arteria femoralis communis)
Com Fem V	Gemeinsame Oberschenkelvene (lat. Vena femoralis communis)
Com Iliac A	Gemeinsame Beckenarterie (lat. Arteria iliaca communis)
Com Iliac V	Gemeinsame Beckenvene (lat. Vena iliaca communis)
CRL	Scheitel-Steiß-Länge
CUA	Composite Ultrasound Age

D

Abkürzung	Beschreibung
D	Maximalgeschwindigkeit der ventrikulären Diastole
d	Gekürzte große Halbachse vom größten Nebenachsenradius zur Mitralringebene
Deep Palm A	Tiefer Hohlhandbogen
Dist	Distanz
Dors Ped A	Fußrückenarterie
Ductus Art	Ductus arteriosus (Gefäßbrücke zwischen Hauptschlagader und Lungenarterie)

E

Abkürzung	Beschreibung
E/E'(lateral)	Maximale E-Wellen-Geschwindigkeit in der Mitralklappe zur
	frühdiastolischen lateralen Bewegung der Mitralklappe
Ea lateral	Frühdiastolische laterale Bewegung der Mitralklappe
Ea Medial	Frühdiastolische mediale Bewegung der Mitralklappe
Ea/Aa(Medial)	Frühdiastolische mediale Bewegung der Mitralklappe zur
	spätsystolischen medialen Bewegung des Vorhofs
ECA	Äußere Halsschlagader
Ectopic	Anzahl der Eileiterschwangerschaften
ED	Enddiastolische Geschwindigkeit
EDD	Errechneter Geburtstermin
EDV	Linksventrikuläres enddiastolisches Volumen
EF	Linksventrikuläre Ejektionsfraktion
EFW	Estimated Fetal Weight (engl. für Gewichtsschätzung des
	Fötus)
Endo.Thickn.(Endo)	Endometriumdicke
EPSS	Distanz zwischen Punkt E und dem interventrikulären Septum
ESV	Linksventrikuläres endsystolisches Volumen
Ext	Äußere
Ext Iliac A	Äußere Beckenarterie
Ext Iliac V	Äußere Beckenvene

F

Abkürzung	Beschreibung
FHR	Fötale Herzfrequenz
FIB	Wadenbeinlänge
FL	Oberschenkellänge
FS	Linksventrikuläre Verkürzungsfraktion

G

Abkürzung	Beschreibung
GA	Gestationsalter
Gallenblase	Gallenblase
GP	Wachstumsperzentile
Gravida	Anzahl der Schwangerschaften
GS	Fruchtblase
GSV (Calf)	Große Rosenvene (Wade)
GSV (Thigh)	Große Rosenvene (Oberschenkel)

 \mathbf{H}

Abkürzung	Beschreibung
НС	Kopfumfang
HEM	Gehirnhälfte
Hep A Dur	A-Wellen-Dauer in der Lebervene
Hep A Vel	A-Wellen-Flussgeschwindigkeit in der Lebervene
Hep D Vel	D-Wellen-Flussgeschwindigkeit in der Lebervene
Hep S Vel	S-Wellen-Flussgeschwindigkeit in der Lebervene
Hüfte	Hüfte
HL	Oberarmlänge
HR	Herzfrequenz
HR-LV	Herzfrequenz – linksventrikulär

I

Abkürzung	Beschreibung
ICA	Innere Halsschlagader
Inf	Untere
Inf. ParThyroid	Untere Nebenschilddrüse (lat. Glandula parathyroidea inferior)
Innom A	Gemeinsamer Gefäßstamm der rechten Arm-/Kopfarterien (lat. Truncus brachiocephalicus)

Abkürzung	Beschreibung
Innom V	Vena brachiocephalica
Int	Innere
Int Iliac A	Innere Beckenarterie
Int Iliac V	Innere Beckenvene
Int Jugular V	Innere Drosselvene (lat. Vena jugularis interna)
IOD	Intraokularer Druck
ITA	Untere Schilddrüsenarterie (lat. Arteria thyroidea inferior)
IVC	Untere Hohlvene
IVCT	Linksventrikuläre isovolumetrische Kontraktionszeit
IVRT	Linksventrikuläre isovolumetrische Relaxationszeit
IVS%	Interventrikuläre Septumdicke in %
IVSd	Diastolische interventrikuläre Septumdicke
IVSs	Systolische interventrikuläre Septumdicke

\mathbf{K}

Abkürzung	Beschreibung
Kidney (Niere)	Kidney (Niere)

L

Abkürzung	Beschreibung
LA	Durchmesser des linken Vorhofs
LA/AO	Verhältnis linker Vorhof/Aortenwurzel
LE Art	Arterie der unteren Extremität
LE Vein	Vene der unteren Extremität
Lesion (Läsion)	Lesion (Läsion)
Liver (Leber)	Liver (Leber)
LMP	Letzte Menstruationsperiode
LPA Vmax	Maximale Geschwindigkeit in der linken Pulmonalklappe
LSV	Untere Rosenvene

Abkürzung	Beschreibung
Lt	Links
LV TEI	Linksventrikulärer TEI-Index
LVAd Sa En	Linksventrikulärer Endokardialbereich auf Papillarmuskelebene an Enddiastole in Kurzachsenansicht
LVAd Sa Ep	Linksventrikulärer Epikard-Bereich auf Papillarmuskelebene an der Enddiastole in Kurzachsenansicht
LVd	Linksventrikulärer Durchmesser an der Enddiastole
LVET	Linksventrikuläre Ejektionszeit
LVIDd	Linksventrikulärer Innendurchmesser, enddiastolisch
LVIDs	Linksventrikulärer Innendurchmesser, endsystolisch
LVLd Apical	Länge der linksventrikulären Längsachse an Enddiastole in Apikalansicht
LVM	Linksventrikuläre Masse
LVOT	Linksventrikulärer Ausflusstrakt
LVOT Vmax	Maximale Geschwindigkeit über den linksventrikulären Ausflusstrakt
LVOT VTI	Geschwindigkeits-Zeit-Integral im linksventrikulären Ausflusstrakt
LVPEP	Linksventrikuläres Präejektionsintervall
LVPW%	Linksventrikuläre Hinterwanddicke in %
LVPWd	Diastolische linksventrikuläre Hinterwanddicke
LVPWs	Systolische linksventrikuläre Hinterwanddicke
LVs	Linksventrikulärer Durchmesser an der Endsystole

M

Abkürzung	Beschreibung
MCA	Mittlere Zerebralarterie
MCS	Mitralklappen-Separation
Med Cub V	Vena mediana cubiti
Mid	Mittlere

Abkürzung	Beschreibung
MPA	Durchmesser der Hauptpulmonalklappe
MPA Vmax	Maximale Geschwindigkeit in der Hauptpulmonalklappe
MR dP/dt	Mitralklappen-Regurgitation dP/dt abgeleitet von der Geschwindigkeit der Mitralklappen-Regurgitation
MR ERO	Effektive Regurgitationsöffnung der Mitralklappe
MR Flow Rate	Maximales momentanes Durchflussvolumen
MR Rad	Radius der Mitralklappenstenose
MR Vmax	Maximale Geschwindigkeit der Mitralklappen-Regurgitation
MR Volume	Regurgitationsfluss der Mitralklappe
MR VTI	Geschwindigkeits-Zeit-Integral der Mitralklappen- Regurgitation
MS Rad	Radius der Mitralklappenstenose
MS VTI	Geschwindigkeits-Zeit-Integral der Mitralklappenstenose
MV A Amp	A-Wellenamplitude in der Mitralklappe
MV A Dur	A-Wellen-Dauer in der Mitralklappe
MV A Vel	Maximale A-Wellen-Geschwindigkeit in der Mitralklappe
MV C-O Dur	Öffnungs- und Schließzyklen der Mitralklappe
MV DE	DE-Wellenamplitude der Mitralklappe
MV DecT	Dezelerationszeit der Mitralklappe
MV Diam (MV-Durchmesser)	Durchmesser der Mitralklappe
MV E Amp	E-Wellenamplitude in der Mitralklappe
MV E Dur	E-Wellen-Dauer in der Mitralklappe
MV E Vel	Maximale E-Wellen-Geschwindigkeit in der Mitralklappe
MV E-F Slope	E-F-Slope (E-F-Neigung) der Mitralklappe
MV VTI	Geschwindigkeits-Zeit-Integral der Mitralklappe
MVA	Mitralklappenöffnungsfläche
MVA(PHT)	Mitralklappenöffnungsfläche (Druckhalbwertszeit)
MVA(VTI)	Mitralklappenöffnungsfläche (Geschwindigkeits-Zeit-Integral)

N

Abkürzung	Beschreibung
NF	Nackenfalte
Nipple-Les. D	Nipple-Lesion Distance
NT	Nackentransparenz

0

Abkürzung	Beschreibung
OFD	Okzipital-Frontal-Durchmesser

P

Abkürzung	Beschreibung
PAEDP	Enddiastolischer pulmonalarterieller Druck
Brauchspeicheldrüse	Brauchspeicheldrüse
Para	Anzahl der Lebendgeburten
Peron A	Wadenbeinschlagader (lat. Arteria peronea)
Peron V	Wadenbeinvene (lat. Vena fibularis)
PFA	Tiefe Oberschenkelarterie (lat. Arteria femoralis profunda)
PFV	Tiefe Oberschenkelvene (lat. Vena femoralis profunda)
PI	Pulsatilitätsindex
PLI	Preload-Index
Popl A	Kniekehlenarterie (lat. Arteria poplitea)
Popl V	Kniekehlenvene (lat. Vena poplitea)
Port.V.	Pfortader (lat. Vena portae)
Post	Hinter-, hintere
Post Tib A	Hintere Schienbeinarterie (lat. Arteria tibialis posterior)
Post Tib V	Hintere Schienenbeinvene (lat. Vena tibialis posterior)
PR Vmax	Maximale Geschwindigkeit der Pulmonalklappen- Regurgitation

Abkürzung	Beschreibung
PR VTI	Geschwindigkeits-Zeit-Integral der Pulmonalklappen-
	Regurgitation
PRI	PR-Intervall
Prof	Profunda
Prostata	Prostata
Prox	Proximal
PS	Systolische Maximalgeschwindigkeit
Pulm A Dur	A-Wellen-Dauer in der Pulmonalvene
Pulm A Vel	A-Wellen-Flussgeschwindigkeit in der Pulmonalvene
Pulm D Vel	D-Wellen-Flussgeschwindigkeit in der Pulmonalvene
Pulm D VTI	Geschwindigkeits-Zeit-Integral der D-Welle in der
	Pulmonalvene
Pulm DecT	Dezelerationszeit in der Pulmonalvene
Pulm S Vel	S-Wellen-Flussgeschwindigkeit in der Pulmonalvene
Pulm S VTI	Geschwindigkeits-Zeit-Integral der S-Welle in der
	Pulmonalvene
PV AccT	Akzelerationszeit der Pulmonalklappe
PV Diam	Durchmesser der Pulmonalklappe
(PV-Durchmesser)	
PV Vmax	Maximale Geschwindigkeit über die Pulmonalklappe
PV VTI	Geschwindigkeits-Zeit-Integral in der Pulmonalklappe
PVIV	Maximalgeschwindigkeits-Index für Venen

R

Abkürzung	Beschreibung
RAD	Radiuslänge
Rad A	Speichenarterie (lat. Arteria radialis)
Rad V	Speichenvene (lat. Vena radialis)
RAP	Systolischer Druck im rechten Vorhof
Ratio(A)	Verhältnis(Fläche)

Abkürzung	Beschreibung
Ratio(D)	Verhältnis(Distanz)
Renal A (Nierenarterie)	Nierenarterie (lat. Arteria renalis)
Nierenkortex	Nierenkortex
RI	Resistance-Index
RPA Vmax	Maximale Geschwindigkeit in der rechten Pulmonalarterie
Rt	Rechts
RV TEI	Rechtsventrikulärer TEI-Index
RVAWd	Diastolische rechtsventrikuläre Vorderwanddicke
RVET	Rechtsventrikuläre Ejektionszeit
RVIDd	Rechtsventrikulärer Innendurchmesser, enddiastolisch
RVOT	Rechtsventrikulärer Ausflusstrakt
RVOT Vmax	Maximale Geschwindigkeit über den rechtsventrikulären Ausflusstrakt
RVOT VTI	Geschwindigkeits-Zeit-Integral im rechtsventrikulären Ausflusstrakt
RVPEP	Rechtsventrikuläres Präejektionsintervall
RVSP	Maximaler rechtsventrikulärer systolischer Druck

S

Abkürzung	Beschreibung
S	Maximalgeschwindigkeit der ventrikulären Systole
Sa lateral	Systolische laterale Bewegung der Mitralklappe
Sa Medial	Systolische mediale Bewegung der Mitralklappe
SD (S/D)	SD-Verhältnis (systolisch/diastolisch)
SFA	Oberflächliche Oberschenkelarterie (lat. Arteria femoralis superficialis)
SFV	Oberflächliche Oberschenkelvene (lat. Vena femoralis superficialis)
SI	Schlagindex

Abkürzung	Beschreibung
Skin-Les. D	Distanz Haut-Läsion
SMA	Obere Eingeweidearterie (lat. Arteria mesenterica superior)
Milz	Milz
STA	Obere Schilddrüsenarterie
Subclav A	Schlüsselbeinarterie (lat. Arteria subclavia)
Subclav V	Schlüsselbeinvene (lat. Vena subclavia)
Sup	Obere
Sup	Oberflächliche
Sup Palm A	Oberflächliche Hohlhandarterie
Sup. ParThyroid	Obere Nebenschilddrüse
Oberhalb der	Oberhalb der Nebenniere gelegen
Nebenniere gelegen	
SV	Schlagvolumen

T

Abkürzung	Beschreibung
TAmax	Zeitlich gemittelte maximale Geschwindigkeit
Hoden	Hoden
Schilddrüse	Schilddrüse
Thyroid Ist.	Schilddrüsen-Isthmus
TIB	Schienbeinlänge
TR Fraction	Regurgitationsfraktion der Trikuspidalklappe
TR Rad	Radius der Trikuspidalklappenstenose
TR Vmax	Maximale Geschwindigkeit der Trikuspidalklappen- Regurgitation
TR VTI	Geschwindigkeits-Zeit-Integral der Trikuspidalklappen- Regurgitation
TV A Vel	A-Wellen-Geschwindigkeit in der Trikuspidalklappe
TV C-O Dur	Öffnungs- und Schließzyklen der Trikuspidalklappe

Abkürzung	Beschreibung
TV Diam	Durchmesser der Trikuspidalklappe
(TV-Durchmesser)	
TV E Vel	Maximale E-Wellen-Geschwindigkeit in der Trikuspidalklappe
TV E/A	E/A-Verhältnis der Trikuspidalklappe
TV Vmax	Maximale Geschwindigkeit über die Trikuspidalklappe
TV VTI	Geschwindigkeits-Zeit-Integral der Trikuspidalklappe

U

Abkürzung	Beschreibung
UE Art	Arterie der oberen Extremität
UE Vein	Vene der oberen Extremität
Ulna	Ulna (Ellenlänge)
Ulnar A	Ellenarterie (lat. Arteria ulnaris)
Ulnar V	Ellenvene (lat. Vena ulnaris)

V

Abkürzung	Beschreibung
Va	Vorderhorn des lateralen Ventrikels
Vertebral A	Wirbelsäulenarterie (lat. Arteria vertebralis)
Gefäß	Gefäß
Vp	Hinterhorn des lateralen Ventrikels
VTI	Geschwindigkeits-Zeit-Integral